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Distinct, developmental stage-specific activation
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SUMMARY

The metacyclic form of African trypanosomes is the first to express genes for the Variant Surface Glycoprotein (VSG)
and it uses an unusually predictable subset of the VSG gene repertoire. We have developed a model system for the analysis
of metacyclic VSG (M-VSG) gene expression and have used this to demonstrate that, for two M-VSG genes, different
modes of expression operate in the insect and mammalian phases of the life-cycle. In metacyclic-derived clones, these
genes are expressed in situ, whereas they are routinely activated by duplication in bloodstream trypanosomes. The
expression loci for both M-VSG genes studied are structurally simple and we present a model, based on this, for the
maintenance of a separate M-VSG repertoire and expression system.

Key words: antigenic variation, Trypanosoma brucei, metacyclic VSG.

INTRODUCTION

Infective stages of Trypanosoma brucei are covered
by a surface coat, consisting of the variant surface
glycoprotein (VSG) (Vickerman, 1969; Cross, 1975).
Antigenic variation, periodic switching of the VSG
coat, allows the trypanosomes to evade the host
immune response (reviewed by Barry, 1989). Each
trypanosome has the capacity to express, one at a
time, probably several hundred different variable
antigen types (VATs) and this proceeds in a
hierarchical, though not very predictable, order
(Capbern et al. 1977; Barry, 1986). Each trypano-
some has a repertoire of more than 1000 silent, basic
copy (BC) VSG genes (Van der Ploeg et al. 1982),
most of which are organized in tandem arrays within
chromosomes, although others lie at telomeres.

In the bloodstream, expression of VSG genes
occurs only at special telomeric expression sites (ES)
(Kooter et al. 1987; Johnson, Kooter & Borst, 1987;
Alexandre et al. 1988; Pays et al. 1989). For BC
genes which lie within chromosomes, activation
therefore entails duplication of an expression linked
copy (ELC) into an ES. Telomeric BC genes may be
activated by a similar gene conversion mechanism,
but can also undergo telomere translocation to a
transcriptionally active telomere, or can simply be
activated in situ if they already occupy a potential ES
(reviewed by Pays & Steinert, 1988). To the 5' flanks
of VSG genes is a repeated series of a sequence
approximately 70 base pairs (bp) long, which usually
forms the 5' limit of the duplicated ELC (Liu et al.
1983; Aline et al. 1985). The number of repeats is
often extensive at telomeres, giving rise to large

* Reprint requests to Dr J. D. Barry.

Parasitology (1990), 101, 361-367 Printed in Great Britain

' barren regions' devoid of restriction sites (Michels
et al. 1983).

In the tsetse fly phase of the trypanosome's life-
cycle, VSG is not synthesized until the infective
metacyclic stage develops in the salivary glands of
the fly (reviewed by Barry, 1989), when a very
predictable set of VSG genes — the metacyclic VAT
(M-VAT) repertoire - is activated (Hajduk et al.
1981; Barry, Crowe & Vickerman, 1983; Esser &
Schoenbechler, 1985). This predictability is sur-
prising, as antigenic variation appears to be a system
for generating diversity. The M-VAT repertoire
comprises only 1-2 % of the total repertoire, and
from phenotypic analysis is expressed by a mech-
anism distinct from that used in the bloodstream
(Turner, Barry & Vickerman, 1986). M-VSG BC
genes occupy what seems to be a specific location in
the genome, namely telomeres of the largest chromo-
somes. Furthermore, they are not flanked by large
barren regions (Cornelissen et al. 1985; Lenardo
et al. 1984, 1986; Delauw et al. 1987). The question
arises whether there is a connexion between this
specific location, the different expression system
activated in the fly and the unusual predictability in
M-VAT expression.

There are too few metacyclic cells available from
fly salivary glands to allow direct molecular study.
However, since M-VSG genes are still expressed for
several days following fly transmission, experiments
have been performed on trypanosomes in early
bloodstream infection. From such studies it has been
suggested that M-VSG genes are activated in the
tsetse fly either in situ (Lenardo et al. 1986) or by
duplicative transposition (Delauw et al. 1987). There
are problems with this approach, however, due to
antigenic instability of the developing infection (Le
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Ray et al. 1977) and the fact that M-VSG genes are
activated polyclonally in the fly (Tetley et al. 1987):
examination of individual activation events requires
cloned trypanosomes. To resolve this, we have set up
a model line of trypanosomes with the unusual
combination of relative VAT stability and fly
transmissibility, permitting isolation, in mice, of
cloned metacyclic trypanosome populations fairly
homogeneous in M-VAT expression. We present
data from this model showing, for the first time, that
M-VSG genes are activated by different routes in
metacyclic and bloodstream clones and, from struc-
tural analysis of these telomeres, propose an ex-
planation for the puzzling predictability of the M-
VAT repertoire.

MATERIALS AND METHODS

Trypanosomes

A virulent, cloned line of Trypanosoma brucei
EATRO 795 was transmitted through batches of
25—50 tsetse flies (Glossina morsitans) of a line with
enhanced trypanosome transmissibility (Turner &
Barry, 1989). Standard methods were used for
growth, fly transmission, cloning and VAT-specific
immunofluorescence of trypanosomes (Hajduk &
Vickerman, 1981; Turner & Barry, 1989). Meta-
cyclic trypanosomes were cloned directly from
dissected fly salivary glands. With this line, clones
became patent within 5 days, were monitored for
VAT composition daily from patency, and yielded
more than 108 organisms by days 6-8. The clones
are identified, for convenience, by the VSG ex-
pressed : clones initiated from single metacyclic cells:
1.22i, 1.22J, 1.22v, 1.61g, 1.61h, 1.61i; 1 bloodstream
trypanosome redone of the metacyclic clone 1.22J,
1.22j'; 2 bloodstream trypanosome reclones of the
metacyclic clone 1.61 i, 1.61i', 1.61i".

DNA clones

cDNA clones used as probes for VSG genes 1.22 and
1.61 were pTcV7.1-14 and pTcV7.15-21 respect-
ively (Cornelissen et al. 1985). The plasmid genomic
clone pMG 7.1-1 contains part of the 1.22 gene and
upstream flank (Cornelissen et al. 1985).

Purification of trypanosome DNA, Southern blotting
and hybridization

DNA was prepared from trypanosomes by standard
methodology (Bernards et al. 1981). For the meta-
cyclic clones, harvesting of trypanosomes as early as
possible meant that little DNA was available. For
routine analysis, approximately 2 fig of DNA was
digested with restriction endonucleases under the
manufacturers' conditions (BRL), size fractionated
by agarose gel electrophoresis and Southern blotted

Table 1. VAT composition of metacyclic clones

(VAT compositions were measured by immunofluor-
escence with monoclonal antibodies in bloodsmears from
mice infected with single metacyclic trypanosomes on day
0. Composition is presented as no. positive/total counted.
Only very low numbers were available on the earliest days
of parasitaemia.)

Clone

1.22i
1.22J
1.22v
1.61g
1.61h
1.61i

Day

5

21/21

6

50/50
25/25

17/20

7

95/100*
80/100
88/100*

5/5
11/11
78/100*

8

39/125*

26/45*
44/88*

* Denotes population from which DNA was prepared;
blanks denote no trypanosomes available for analysis.

onto Nylon membrane (Hybond-N, Amersham
International) (Maniatis, Fritsch & Sambrook,
1982). Radio-isotope labelled probes were prepared
by preparative gel electrophoresis to separate the
desired restriction fragments using low melting
temperature agarose (Sigma) and radio-isotope
labelling by hexanucleotide random priming (Fein-
berg & Vogelstein, 1983). Hybridization and washing
of blots, and removal of hybridized probe, were
carried out as detailed by the manufacturer (Amer-
sham International).

RESULTS

Trypanosome populations

From 6 separate tsetse fly transmissions, using the
model trypanosome line, a total of 20 flies (9-1 %)
harbouring mature infections was identified. There
was a characteristic pattern of VAT expression as the
metacyclic clones expressing the M-VSGs ILTat
1.22 and 1.61 developed in early bloodstream
infection (Table 1). As the infection became de-
tectable (days 5-7), in most clones the VAT
remained at > 9 9 % , but by the time there were
sufficient trypanosomes for isolation of DNA, purity
ranged from 31 to 95%. Therefore, since VAT
switching began to occur around day 7, it was
important to confine studies of M-VSG activation to
days 5—7 after fly feed, despite compromising the
amount of material for study.

Modes of activation

Southern blots of DNA from trypanosome clones,
digested with Hind III, were probed with either the
5' Hind III fragment of pTcV7.1-14 or with the
entire insert of pTcV7.15—21. The former probe is
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Fig. 1. Southern blot analysis of M-VSG expression in
metacyclic-derived trypanosome clones. All DNAs were
digested with Hind III. Probes used in these analyses
were: Panel A, the 5' fragment of the pTcV7.1-14
cDNA clone of the 1.22 gene; Panel B, the 3' fragment
of PTcV7.1-14; Panel C, the PTcV7.15-21 cDNA clone
of the 1.61 gene. DNA in each lane was: Al and Bl,
1.22i; A2 and B2, 1.61i; A3 and B3, 1.22J'; Cl , 1.61g;
C2, 1.22i. Post-hybridizational washes were to
01 x SSC, 65 °C. The sizes (kb) of detected bands are
indicated.

specific for the 5' end of the 1.22 gene, the latter for
the two 1.61 BC genes (Cornelissen et al. 1985). Fig. 1
shows a representative hybridization for each gene.
Only a single fragment of 5.3 kb, corresponding to
the BC, was observed with the 5' 1.22 probe in the
metacyclic clone expressing 1.22 (Panel A, lane 1).
The other two metacyclic clones, 1.22j and 1.22v,
had the same pattern (data not shown). As expected,
the non-expressors of 1.22 (e.g. the 1.61 i clone) also
showed only the 1.22 BC gene fragment (Panel A,
lane 2). On the other hand, expressor trypanosome
clones derived from bloodstream trypanosomes (e.g.
1.22j', Panel A, lane 3) showed 2 bands, one
containing the BC gene and the other an extra ELC
gene. In case an ELC fragment was present in the
Hind III digest of 1.221 DNA, co-migrating with the
BC fragment, the blot was stripped of its probe and
rehybridized with the 3' Hind III fragment of the
pTcV7.1-14 insert, which detects from the Hind III
site within the gene to the end of the chromosome.
Again, the metacyclic clones displayed only the 1
band (Fig. IB), while the bloodstream form-derived
expressor clone showed 2 bands.

The 1.61 gene gave similar results, showing only
the 2 BCs in both expressor (1.61g) and non-
expressor (1.22i) metacyclic clones (Fig. 1C) as well
as in the 2 other metacyclic clones 1.61h and 1.61 i
(data not shown). We conclude that trypanosomes
activating these M-VSG genes in the fly do not use

1 2 3 4 B 1 2 3

kb

5 - 1 .
4-9-
4-2-

3-5-

21-3-

5-1
4-9:

4-2-
3-5-

2 0 -
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Fig. 2. Southern blot analysis of 1.22 and 1.61
expression in bloodstream form-derived trypanosome
clones. (A) The 5' Hind III fragment of the TcV7.1-14
cDNA clone was hybridized with a Southern blot of
Hind III digested DNA from the 1.22a, 1.22c, 1.22d,
and 1.22j' clones (lanes 1-4 respectively). (B) The insert
of TcV7.15—21 cDNA clone was hybridized with a
Southern blot of Hind III digested DNA from the
1.61g, 1.61 i' and 1.61 i" clones (lanes 1-3 respectively).
Post-hybridizational washes were to 01 x SSC, 65 °C.

a duplicative activation mechanism, but rather are
activated either in situ or by translocation of an
unusually long segment of the BC telomere to
another telomere. The latter could not be checked by
pulsed field gel electrophoresis, due to there being
only small amounts of DNA available.

In the above experiment, bloodstream form-
derived trypanosome clones exhibited activation of
1.22 and 1.61 by duplicative transposition rather
than in situ activation. To determine if this was a
routine mode of bloodstream activation for the two
M-VSG genes, a Southern blot of Hind Ill-digested
DNA from a set of 8 bloodstream trypanosome
clones which had individually activated the 1.22
gene was probed with the 5' fragment of
pTcV7.1-14. All 8 displayed the single BC gene and
an expression linked copy. Four of these hybridiz-
ations are shown in Fig. 2A. Analysis of 2 similar
clones expressing the 1.61 gene also showed ac-
tivation by duplicative generation of ELCs (Fig. 2B).

Structure of expression sites

Fig. 3 shows a map of the basic copy telomeres for
the 1.22 and 1.61 VSG genes which are used as
expression sites in the metacyclic cells. In com-
parison with bloodstream ES, these ES are very
simple: they contain very short 70 bp repeat regions
(DNA sequencing reveals 1—2 repeats in each) and
very little other sequence repetitive in the genome
(Matthews et al. 1990). The brevity of the 70 bp
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Fig. 3. Restriction maps of the two basic copy telomeres for the 1.22 and 1.61 M-VSG genes. (B) BamH I;
(E) EcoR I; (H) Hind III; (C) Cla I; (Bg) Bgl II; (X) Xba I. 70 bp, 70 base pair repeat unit; VSG, variant
surface glycoprotein gene region.

repeat regions may suggest a low probability of
participation in ELC formation, but our results with
the bloodstream expressors of 1.22 and 1.61 show
that this is not the case: both telomeres can act
frequently as donor telomeres in gene conversion
events.

DISCUSSION

When trypanosomes enter the tsetse fly, transcrip-
tion of VSG genes ceases (Overath et al. 1983) and is
resumed only upon development of the metacyclic
form, a transient stage which develops to mammalian
forms probably within hours of being transmitted
from the fly (Brun et al. 1984). The brief existence
and the paucity of metacyclic cells in tsetse flies
thwart direct experimental analysis. Fortunately,
however, indirect experimental methods are poss-
ible, because M-VSG expression continues for
several days in the trypanosome population mul-
tiplying in the mouse, despite the change to blood-
stream forms (Barry, Hajduk & Vickerman, 1979).
Although this similarity in VSG expression has
sometimes engendered the erroneous belief that the
metacyclic stage itself persists for several days in the
mammal, we believe that the mechanisms used in the
fly are still extant. For example, phenotypic analysis
shows that M-VSG expression in this early blood-
stream phase proceeds in a manner distinct from,
and taking precedence over, that typical of antigenic
variation in chronic bloodstream infection (Barry,
Crowe & Vickerman, 1985; Turner et al., 1986).

There are disadvantages inherent in the indirect
approach described above. Metacyclic populations
are polyclones with respect to the expression of
individual VSGs (Tetley et al. 1987) and fly-
transmitted trypanosomes undergo antigenic vari-
ation several orders of magnitude more frequently
than do the abnormal rodent-adapted lines generally
used in studies on antigenic variation, so stably
expressing clones are not readily available (Turner &

Barry, 1989). Our model system circumvents these
problems: we use a trypanosome line with the
unusual combination of fly-transmissibility and
rodent virulence which does provide clones suffi-
ciently stable for molecular analysis. Two previous
studies of putative M-VSG genes have contrastingly
reported, respectively, in situ and duplicative ac-
tivation in fly-derived populations. Neither studied
activation of the same genes in bloodstream in-
fection. In the first study (Lenardo et al. 1984),
trypanosomes present in mice 5 days after fly
transmission were enriched for major M-VATs by
antibody treatment and revealed only the basic copy
gene for the major M-VSG. However, the polyclonal
origin of each VAT means that analysis by that
approach could not exclude, for example, the
presence of multiple ELCs within the population,
each with a different fragment size in Southern blot
analysis and therefore at an undetectable level. The
second study utilized trypanosome cloned a few
days after fly transmission and reported ELC
production as the expression mode (Delauw et al.
1987). It is apparent, however, that the clones were
raised to high levels by the conventional method,
involving syringe-passaging in mice, which yield, as
our experiments show, organisms which have
switched from the in situ to the ELC mechanism.

It seems clear, from our analysis of 6 metacyclic-
derived clones, that both M-VSG genes are activated
in situ in the fly. Although it cannot be ruled out that
a more complex process occurs, such a non-
duplicative translocation of a very long segment of
DNA, study of B-VSG genes has amply documented
in situ activation as a common means of VSG
switching (reviewed by Pays & Steinert, 1988). In
the bloodstream, only duplicative activation of both
genes was observed in the 10 clones examined.
Moreover, for another two M-VSG genes we have
studied, activation in bloodstream trypanosomes also
occurred only by gene duplication (Cornelissen et al.
1985). Therefore, our data strongly suggest separate,
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life-cycle stage-specific expression mechanisms, as
we have predicted previously (Barry, Crowe &
Vickerman, 1985 ; Turner et al. 1988). It may be that
these mechanisms are mutually exclusive; an
interesting possibility is that, in the fly and during
the early phase of mammal infection, the trypano-
some is incapable of generating ELCs, thereby
permitting exclusive use of the metacyclic mech-
anism. That individual genes can be activated and
expressed by such different developmentally regu-
lated mechanisms is novel and perhaps demonstrates
the flexibility of gene control in parasites.

These findings, taken in conjunction with the
structural simplicity of the 1.22 and 1.61 telomeres
(i.e. brevity of the 70 bp repeat region and lack of
repetitive sequences) (Matthews et al. 1990) have
important implications regarding stability of M-
VSG genes and the surprising predictability of M-
VAT expression. (1) Lack of homology with other
telomeres probably results in increased stability of
unique M-VSG gene telomeres (e.g. the 1.22
telomere), including the VSG gene, by decreasing
the frequency of reciprocal recombination and non-
specific conversion with different chromosomes
(Kooter et al. 1988). Indeed, amongst the conserved
metacyclic repertoire of this serodeme, 1.22 (known
also as GUTat 7.1) is the most stable VAT (Barry
etal. 1983). At the molecular level, the only difference
involving 1.22 noted so far between different
trypanosome stocks is an apparent duplication of the
whole telomere, rather than any internal re-
arrangement (Cornelissen et al. 1985). (2) We can
now offer a possible explanation for the strange
characteristics of the M-VSG repertoire — a mixture
of VATs which is very predictable in content. The
mixture is probably required for trypanosome sur-
vival because, in the field, trypanosomes are trans-
mitted from flies into partially immune reservoir
hosts which possess antibodies against many of the
VSGs in the trypanosome's repertoire. What is more
puzzling is the predictability, which seems inap-
propriate for an infective stage. We propose that
simultaneous expression of the mixture is achieved
through a metacyclic-specific mechanism and that
the predictability results unavoidably from this
mechanism. To permit expression of the mixture,
the metacyclic-specific mechanism would have to
differ from the bloodstream mechanism, which
involves highly preferential activation of one or just
a few expression sites (Liu et al. 1983; Longacre &
Eisen, 1986; Delauw et al. 1987; Myler et al. 1988).
The metacyclic expression system would operate via
random activation within the unique pool of telo-
meres (Tetley et al. 1987) discussed above (telomeres
of the largest set of chromosomes) which would act
as ES in the fly, and would be simpler than that used
in the bloodstream: VSG switching is not required
in the fly. Predictability of the M-VSG repertoire
would be the inevitable consequence of the com-

bination of in situ expression and recombinational
isolation of each of this pool of telomeres: the linked
VSG gene would be conserved and be expressed
only in situ in the metacyclic stage. Some M-VSG
telomeres, such as those described by Lenardo et al.
(1984), could be devoid of 70 bp repeat regions and
not participate in normal ELC formation while
others, such as 1.22 and 1.61, would have a very
small number, restricting their interactive role with
bloodstream VSG telomeres merely to that of donor
(Matthews et al. manuscript in preparation). It is
important, however, to note that, especially in such
a large and dynamic system as this, not all M-VSG
genes need conform to this picture, as this theory
requires only that a reasonable number belong to a
separate pool. Generation of a VSG switching
mechanism would only become necessary a few days
after transmission from the fly. If this theory is
correct, then there is a basic conflict in the trypano-
some, with the pressure for antigenic heterogeneity
outweighing the pressure for antigenic unpredict-
ability: some parasite evasion mechanisms may be
more precarious than at first suspected.
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