42,428 research outputs found

    Velocity resolved spectroscopy of molecular hydrogen emission in NGC6240

    Get PDF
    NGC6240 is a member of the class of luminous galaxies which emit a significant fraction of their total light in the infrared. Based on its highly disturbed morphology, Fosbury and Wall (1979) suggested that the system may be a merger of two gas rich galaxies. It has two nuclei separated by 2 arcsec which are visible in the near infrared and at radio wavelengths and CO observations show that the galaxy contains a large mass of molecular gas. Unusually strong H2 emission lines dominate the near infrared spectrum of this galaxy. The galaxy emits approximately 4x10(exp 7) solar luminosity in the 2.12 micron v = 1 to 0 S(1) line alone, an order of magnitude more than other merging or starburst galaxies. To provide a better understanding of the physical processes responsible for the H2 emission from NGC6240 we have begun a program to obtain high spectral resolution observations using the echelle in CGS4 on the UKIRT. Preliminary data which were obtained in February 1991 are presented here. It is intended to obtain further observations with twice the spatial and spectral resolution in June of this year

    One Table to Count Them All: Parallel Frequency Estimation on Single-Board Computers

    Get PDF
    Sketches are probabilistic data structures that can provide approximate results within mathematically proven error bounds while using orders of magnitude less memory than traditional approaches. They are tailored for streaming data analysis on architectures even with limited memory such as single-board computers that are widely exploited for IoT and edge computing. Since these devices offer multiple cores, with efficient parallel sketching schemes, they are able to manage high volumes of data streams. However, since their caches are relatively small, a careful parallelization is required. In this work, we focus on the frequency estimation problem and evaluate the performance of a high-end server, a 4-core Raspberry Pi and an 8-core Odroid. As a sketch, we employed the widely used Count-Min Sketch. To hash the stream in parallel and in a cache-friendly way, we applied a novel tabulation approach and rearranged the auxiliary tables into a single one. To parallelize the process with performance, we modified the workflow and applied a form of buffering between hash computations and sketch updates. Today, many single-board computers have heterogeneous processors in which slow and fast cores are equipped together. To utilize all these cores to their full potential, we proposed a dynamic load-balancing mechanism which significantly increased the performance of frequency estimation.Comment: 12 pages, 4 figures, 3 algorithms, 1 table, submitted to EuroPar'1

    Clustering on very small scales from a large sample of confirmed quasar pairs: Does quasar clustering track from Mpc to kpc scales?

    Get PDF
    We present the most precise estimate to date of the clustering of quasars on very small scales, based on a sample of 47 binary quasars with magnitudes of g<20.85g<20.85 and proper transverse separations of 25h1\sim 25\,h^{-1}\,kpc. Our sample of binary quasars, which is about 6 times larger than any previous spectroscopically confirmed sample on these scales, is targeted using a Kernel Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is "complete" in that all of the KDE target pairs with 17.0R36.2h117.0 \lesssim R \lesssim 36.2\,h^{-1}\,kpc in our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We catalogue 230 candidate quasar pairs with angular separations of <8\arcsec, from which our binary quasars were identified. We determine the projected correlation function of quasars (Wˉp\bar W_{\rm p}) in four bins of proper transverse scale over the range 17.0R36.2h117.0 \lesssim R \lesssim 36.2\,h^{-1}\,kpc. The implied small-scale quasar clustering amplitude from the projected correlation function, integrated across our entire redshift range, is A=24.1±3.6A=24.1\pm3.6 at 26.6 h1\sim 26.6 ~h^{-1}\,kpc. Our sample is the first spectroscopically confirmed sample of quasar pairs that is sufficiently large to study how quasar clustering evolves with redshift at 25 h1\sim 25 ~h^{-1} kpc. We find that empirical descriptions of how quasar clustering evolves with redshift at 25 h1\sim 25 ~h^{-1} Mpc also adequately describe the evolution of quasar clustering at 25 h1\sim 25 ~h^{-1} kpc.Comment: 16 pages, 8 figures, 6 tables, Accepted for publication in MNRA

    Casimir Effects in Renormalizable Quantum Field Theories

    Get PDF
    We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.Comment: 27 pp., 11 EPS figures, LaTeX using ijmpa1.sty; email correspondence to R.L. Jaffe ; based on talks presented by the authors at the 5th workshop `QFTEX', Leipzig, September 200

    Retardation of atherosclerosis in immunocompetent apolipoprotein (apo) E-deficient mice followingliver-directed administration of a [E1-, E3-,polymerase-] adenovirus vector containing the elongation factor-1a promoter driving expression of human apoE cDNA

    Get PDF
    Although gene transfer of human apolipoprotein E (apoE), a 34-kDa circulating glycoprotein, to the liver of apoEdeficient(apoE-/-) mice using recombinant adenoviral vectors (rAd) is antiatherogenic, its full therapeutic potentialhas yet to be realized. First generation vectors led to immune clearance of transduced hepatocytes, while animproved vector with adenovirus regions E1, E3 and DNA polymerase deleted also had transient effects due tocellular shutdown of the cytomegalovirus (CMV) promoter. Here, we have studied an alternative promoter from thecellular elongation factor 1a (EF-1a) gene, injecting 6-8 week old apoE-/- mice intravenously with 2x1010 virusparticles (vp) of the [E1-, E3-, polymerase-] rAd vector Ad-EF1·-apoE. Plasma apoE levels were low (18-55 ng/ml)and failed to reduce plasma cholesterol or normalize the adverse lipoprotein profile. By contrast, thehyperlipidaemic phenotype of apoE-/- mice treated with Ad-CMV-apoE (2x1010 vp) was transiently normalized.Nevertheless, at termination (265 days) the aortic lesion areas in animals given Ad-EF1·-apoE were significantlyreduced by 15% (P<0.05) compared to untreated animals, a decrease approaching that in Ad-CMV-apoE-treatedmice (23%; P<0.02). Importantly, the attenuation of apoE transgene expression noted with the CMV promoter wasabsent with the EF-1a promoter, which gave relatively sustained, albeit low, levels of plasma apoE throughout thestudy period
    corecore