3,330 research outputs found
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
We present an extension of the multi-region relaxed magnetohydrodynamics
(MRxMHD) equilibrium model that includes pressure anisotropy and general plasma
flows. This anisotropic extension to our previous isotropic model is motivated
by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria.
We prove that as the number of plasma regions becomes infinite, our anisotropic
extension of MRxMHD reduces to anisotropic ideal MHD with flow. The
continuously nested flux surface limit of our MRxMHD model is the first
variational principle for anisotropic plasma equilibria with general flow
fields.Comment: 11 pages, 2 figures. arXiv admin note: text overlap with
arXiv:1401.307
Differential Tissue Response to Growth Hormone in Mice
Growth hormone (GH) has been shown to act directly on multiple tissues throughout the body. Historically, it was believed that GH acted directly in the liver and only indirectly in other tissues via insulin‐like growth hormone 1 (IGF‐1). Despite extensive work to describe GH action in individual tissues, a comparative analysis of acute GH signaling in key metabolic tissues has not been performed. Herein, we address this knowledge gap. Acute tissue response to human recombinant GH was assessed in mice by measuring signaling via phospho‐STAT5 immunoblotting. STAT5 activation is an easily and reliably detected early marker of GH receptor engagement. We found differential tissue sensitivities; liver and kidney were equally GH‐sensitive and more sensitive than white adipose tissue, heart, and muscle (gastrocnemius). Gastrocnemius had the greatest maximal response compared to heart, liver, white adipose tissue, and whole kidney. Differences in maximum responsiveness were positively correlated with tissue STAT5 abundance, while differences in sensitivity were not explained by differences in GH receptor levels. Thus, GH sensitivity and responsiveness of distinct metabolic tissues differ and may impact physiology and disease
Spine head calcium as a measure of summed postsynaptic activity for driving synaptic plasticity
We use a computational model of a hippocampal CA1 pyramidal cell to demonstrate that spine head calcium provides an instantaneous readout at each synapse of the postsynaptic weighted sum of all presynaptic activity impinging on the cell. The form of the readout is equivalent to the functions of weighted, summed inputs used in neural network learning rules. Within a dendritic layer, peak spine head calcium levels are either a linear or sigmoidal function of the number of coactive synapses, with nonlinearity depending on the ability of voltage spread in the dendrites to reach calcium spike threshold. This is strongly controlled by the potassium A-type current, with calcium spikes and the consequent sigmoidal increase in peak spine head calcium present only when the A-channel density is low. Other membrane characteristics influence the gain of the relationship between peak calcium and the number of active synapses. In particular, increasing spine neck resistance increases the gain due to increased voltage responses to synaptic input in spine heads. Colocation of stimulated synapses on a single dendritic branch also increases the gain of the response. Input pathways cooperate: CA3 inputs to the proximal apical dendrites can strongly amplify peak calcium levels due to weak EC input to the distal dendrites, but not so strongly vice versa. CA3 inputs to the basal dendrites can boost calcium levels in the proximal apical dendrites, but the relative electrical compactness of the basal dendrites results in the reverse effect being less significant. These results give pointers as to how to better describe the contributions of pre- and postsynaptic activity in the learning "rules" that apply in these cells. The calcium signal is closer in form to the activity measures used in traditional neural network learning rules than to the spike times used in spike-timing-dependent plasticity.Output Type: Lette
Kiwi forego vison in the guidance of their nocturnal activities
We propose that the Kiwi visual system has undergone adaptive regression evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information
Estimating ecological metrics for holistic conservation management in a biodiverse but information‐poor tropical region
Conservation ecologists face the dual challenge of working with difficult‐to‐study species and providing ecological metrics that support conservation management at global, regional, and local levels. We present metrics identifying distributions, site‐level and global abundance, site‐contextualized habitat requirements, and threats for seven dry forest endemic birds (two threatened, one Near Threatened) in the globally important Tumbes region of Peru. Extents of occurrence ranged from 36,000 to 152,000 km2, and while broad distributions were generally congruent, nearly half of species overlapped 150,000. Site‐level population estimates varied hugely, reflecting size of site and extreme variation in local abundances. Large tree girths and dense low cover generally promoted bird abundance, but stem density acted in opposite directions for different species, implying the need for site‐ and species‐specific habitat management. Habitat quality varied across sites, further complicating management options at the local level (e.g., reduced grazing). We highlight the suitability of our methods in providing useful conservation metrics for data‐poor regions, and demonstrate their application. Importantly, we propose key sites and priority actions for the region, including extensions of existing protected areas
Minimally Constrained Model of Self-Organized Helical States in Reversed-Field Pinches
We show that the self-organized single-helical-axis (SHAx) and double-axis (DAx) states in reversed field pinches can be reproduced in a minimally constrained equilibrium model using only five parameters. This is a significant reduction on previous repre
Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane
Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum ‘Xanthi’) plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater
Dissociation energies of AgRG (RG = Ar, Kr, Xe) and AgO molecules from velocity map imaging studies
The near ultraviolet photodissociation dynamics of silver atom rare gas
dimers have been studied by velocity map imaging. AgRG (RG = Ar, Kr, Xe)
species generated by laser ablation are excited in the region of the C <- X
continuum leading to direct, near threshold dissociation generating Ag* (2P3/2)
+ RG (1S0) products. Images recorded at excitation wavelengths throughout the C
<- X continuum, coupled with known atomic energy levels, permit determination
of the ground X (2SIGMA+) state dissociation energies of 85.9 +/- 23.4 cm-1
(AgAr), 149.3 +/- 22.4 cm-1 (AgKr) and 256.3 +/- 16.0 cm-1 (AgXe). Three
additional photolysis processes, each yielding Ag atom photoproducts, are
observed in the same spectral region. Two of these are markedly enhanced in
intensity upon seeding the molecular beam with nitrous oxide, and are assigned
to photodissociation of AgO at the two photon level. These features yield an
improved ground state dissociation energy for AgO of 15965 +/- 81 cm-1, which
is in good agreement with high level calculations. The third process results in
Ag atom fragments whose kinetic energy shows anomalously weak photon energy
dependence and is assigned tentatively to dissociative ionization of the silver
dimer Ag2
- …