799 research outputs found

    Phonons and specific heat of linear dense phases of atoms physisorbed in the grooves of carbon nanotube bundles

    Full text link
    The vibrational properties (phonons) of a one-dimensional periodic phase of atoms physisorbed in the external groove of the carbon nanotube bundle are studied. Analytical expressions for the phonon dispersion relations are derived. The derived expressions are applied to Xe, Kr and Ar adsorbates. The specific heat pertaining to dense phases of these adsorbates is calculated.Comment: 4 PS figure

    The Self-dual String Soliton in AdS_4\times S^7 spacetime

    Full text link
    We construct self-dual string soliton solutions in AdS4×S7AdS_4\times S^7 spacetime, starting from the covariant equations of motion of M5-brane. We study the properties of the solutions and find that their action are linearized, indicating the BPS nature of the solutions, and they have the same electric and magnetic charge. The straight string soliton solution represents the configuration of the membranes ending on M5-brane with a straight string intersection, and it behaves like the spiky solution in flat spacetime. The spherical string soliton solution, which could be related to the straight one by a conformal transformation, represents the membranes ending on M5-brane with a spherical intersection.Comment: 15 pages;typos corrected, references added;published versio

    B-type defects in Landau-Ginzburg models

    Full text link
    We consider Landau-Ginzburg models with possibly different superpotentials glued together along one-dimensional defect lines. Defects preserving B-type supersymmetry can be represented by matrix factorisations of the difference of the superpotentials. The composition of these defects and their action on B-type boundary conditions is described in this framework. The cases of Landau-Ginzburg models with superpotential W=X^d and W=X^d+Z^2 are analysed in detail, and the results are compared to the CFT treatment of defects in N=2 superconformal minimal models to which these Landau-Ginzburg models flow in the IR.Comment: 50 pages, 2 figure

    An Ecological Basis for Ecosystem Management

    Get PDF
    This report was prepared by the Southwestern Regional Ecosystem Management Study Team composed of management and research biologists. The USDA Forest Service Southwestern Regions Regional Forester, Larry Henson, and the Rocky Mountain Forest and Range Experiment Station Director, Denver Burns, chartered this team to recommend an ecological basis for ecosystem management. This report is not intended to provide details on all aspects of ecosystem management; it simply provides information and makes recommendations for an ecological basis for ecosystem management. The report is not a decision document. It does not allocate resources on public lands nor does it make recommendations to that effect. The report of this Study Team may be relied upon as input in processes initiated under the National Environmental Policy Act (NEPA), National Forest Management Act (NFMA), Endangered Species Act (ESA), Administrative Procedures Act (APA), and other applicable laws. The information contained in this report is general in nature, rather than site specific. Implementation of ecosystem management and allocation of resources on Forest Service administered lands is the responsibility of the National Forest System in partnership with Forest Service Research and State and Private Forestry. Implementation is done through Forest and project plans that are subject to the NEPA process of disclosing the effects of proposed actions and affording the opportunity for public comment. The Southwestern Region follows a planning process for projects called Integrated Resource Management (IRM). The opinions expressed by the authors do not necessarily represent the policy or position of the U.S. Department of Agriculture, the Forest Service, The Nature Conservancy, or the Arizona Game and Fish Department. The Study Team acknowledges the valuable input of more than 50 individuals from various agencies, universities, professional organizations, and other groups who provided thoughtful comments of an earlier draft of this document. Some of their comments are included in Appendix 3

    CoGeNT Interpretations

    Full text link
    Recently, the CoGeNT experiment has reported events in excess of expected background. We analyze dark matter scenarios which can potentially explain this signal. Under the standard case of spin independent scattering with equal couplings to protons and neutrons, we find significant tensions with existing constraints. Consistency with these limits is possible if a large fraction of the putative signal events is coming from an additional source of experimental background. In this case, dark matter recoils cannot be said to explain the excess, but are consistent with it. We also investigate modifications to dark matter scattering that can evade the null experiments. In particular, we explore generalized spin independent couplings to protons and neutrons, spin dependent couplings, momentum dependent scattering, and inelastic interactions. We find that some of these generalizations can explain most of the CoGeNT events without violation of other constraints. Generalized couplings with some momentum dependence, allows further consistency with the DAMA modulation signal, realizing a scenario where both CoGeNT and DAMA signals are coming from dark matter. A model with dark matter interacting and annihilating into a new light boson can realize most of the scenarios considered.Comment: 24 pages, 12 figs, v2: published version, some discussions clarifie

    Squeezing of Atoms in a Pulsed Optical Lattice

    Full text link
    We study the process of squeezing of an ensemble of cold atoms in a pulsed optical lattice. The problem is treated both classically and quantum-mechanically under various thermal conditions. We show that a dramatic compression of the atomic density near the minima of the optical potential can be achieved with a proper pulsing of the lattice. Several strategies leading to the enhanced atomic squeezing are suggested, compared and optimized.Comment: Latex, 9 pages, 10 figures, submitted to PR

    Semi-empirical catalog of early-type galaxy-halo systems: dark matter density profiles, halo contraction and dark matter annihilation strength

    Full text link
    With SDSS galaxy data and halo data from up-to-date N-body simulations we construct a semi-empirical catalog (SEC) of early-type systems by making a self-consistent bivariate statistical match of stellar mass (M_star) and velocity dispersion (sigma) with halo virial mass (M_vir). We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M_star and sigma. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. The resulting dark matter density profiles deviate in general from the dissipationless profile of NFW or Einasto and their mean inner density slope and concentration vary systematically with M_vir. Statistical tests of the distribution of profiles at fixed M_vir rule out the null hypothesis that it follows the distribution predicted by N-body simulations for M_vir ~< 10^{13.5-14.5} M_solar. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M_vir ~< 10^{13.5-14.5} M_solar supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ~ 3-4 at M_vir = 10^{12} M_solar, and (2) the inner density slope has a mean of ~ 1.3 with rho(r) ~ r^{-alpha} and a halo-to-halo rms scatter of rms(alpha) ~ 0.4-0.5 for 10^{12} M_solar ~< M_vir ~< 10^{13-14} M_solar steeper than the NFW profile (alpha=1). Based on our results we predict that halos of nearby elliptical and lenticular galaxies can, in principle, be promising targets for gamma-ray emission from dark matter annihilation.Comment: 43 pages, 20 figures, JCAP, revised and accepted versio

    Geographic Information Systems (GIS) in Assessing Dental Health

    Get PDF
    The present study investigated the distribution profile of dental caries and its association with areas of social deprivation at the individual and contextual level. The cluster sample consisted of 1,002 12-year-old schoolchildren from Piracicaba, SP, Brazil. The DMFT Index was used for dental caries and the Care Index was used to determine access to dental services. On the individual level, variables were associated with a better oral status. On the contextual level, areas were not associated with oral status. However, maps enabled determining that the central districts have better social and oral conditions than the deprived outlying districts

    SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes.

    Get PDF
    OBJECTIVES: To understand SARS-Co-V-2 infection and transmission in UK nursing homes in order to develop preventive strategies for protecting the frail elderly residents. METHODS: An outbreak investigation involving 394 residents and 70 staff, was carried out in 4 nursing homes affected by COVID-19 outbreaks in central London. Two point-prevalence surveys were performed one week apart where residents underwent SARS-CoV-2 testing and had relevant symptoms documented. Asymptomatic staff from three of the four homes were also offered SARS-CoV-2 testing. RESULTS: Overall, 26% (95% CI 22-31) of residents died over the two-month period. All-cause mortality increased by 203% (95% CI 70-336) compared with previous years. Systematic testing identified 40% (95% CI 35-46) of residents as positive for SARS-CoV-2, and of these 43% (95% CI 34-52) were asymptomatic and 18% (95% CI 11-24) had only atypical symptoms; 4% (95% CI -1 to 9) of asymptomatic staff also tested positive. CONCLUSIONS: The SARS-CoV-2 outbreak in four UK nursing homes was associated with very high infection and mortality rates. Many residents developed either atypical or had no discernible symptoms. A number of asymptomatic staff members also tested positive, suggesting a role for regular screening of both residents and staff in mitigating future outbreaks

    Spinor condensates and light scattering from Bose-Einstein condensates

    Full text link
    These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999 Summer School, Session LXXI
    corecore