2,481 research outputs found

    Robust incremental SLAM with consistency-checking

    Get PDF
    Incorrect landmark and loop closure measurements can cause standard SLAM algorithms to fail catastrophically. Recently, several SLAM algorithms have been proposed that are robust to loop closure errors, but it is shown in this paper that they cannot provide robust solutions when landmark measurement errors occur. The root cause of this problem is that the robust SLAM algorithms only focus on generating solutions that are locally consistent (i.e. each measurement agrees with its corresponding estimates) rather than globally consistent (i.e. all of the measurements in the solution agree with each other). Moreover, these algorithms do not attempt to maximize the number of correct measurements included in the solution, meaning that often correct measurements are ignored and the solution quality suffers as a result. This paper proposes a new formulation of the robust SLAM problem that seeks a globally consistent map that also maximizes the number of measurements included in the solution. In addition, a novel incremental SLAM algorithm, called incremental SLAM with consistency-checking, is developed to solve the new robust SLAM problem. Finally, simulated and experimental results show that the new algorithm significantly outperforms state-of-the-art robust SLAM methods for datasets with incorrect landmark measurements and can match their performance for datasets with incorrect loop closures.Charles Stark Draper Laboratory. Internal Research and Development Progra

    Adaptive foveated single-pixel imaging with dynamic super-sampling

    Get PDF
    As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requires at least the same number of correlation measurements as there are pixels in the reconstructed image. Therefore single-pixel imaging systems typically exhibit low frame-rates. To mitigate this, a range of compressive sensing techniques have been developed which rely on a priori knowledge of the scene to reconstruct images from an under-sampled set of measurements. In this work we take a different approach and adopt a strategy inspired by the foveated vision systems found in the animal kingdom - a framework that exploits the spatio-temporal redundancy present in many dynamic scenes. In our single-pixel imaging system a high-resolution foveal region follows motion within the scene, but unlike a simple zoom, every frame delivers new spatial information from across the entire field-of-view. Using this approach we demonstrate a four-fold reduction in the time taken to record the detail of rapidly evolving features, whilst simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This tiered super-sampling technique enables the reconstruction of video streams in which both the resolution and the effective exposure-time spatially vary and adapt dynamically in response to the evolution of the scene. The methods described here can complement existing compressive sensing approaches and may be applied to enhance a variety of computational imagers that rely on sequential correlation measurements.Comment: 13 pages, 5 figure

    Resolving Shelf Break Exchange Around the European Northwest Shelf

    Get PDF
    Shelf seas act as a significant sink of carbon within the global ocean. This occurs as carbon is exported beneath the permanent oceanic thermocline through the downwelling circulation across the shelf break. This downwelling circulation is quantified here using two regional ocean model configurations of the European northwest shelf, with differing resolution (7‐ and 1.5‐km grid spacing). The dominant mechanisms and impact of model resolution are assessed along the length of the shelf break. The total downwelling circulation is stronger at higher resolution, due to an increased on‐shelf transport at internal depths (20–150 m) and increased off‐shelf transport at the base of the water column. At internal depths, these differences increase seasonally, influenced by stratification. Key processes in cross‐shelf exchange only begin to be resolved at O(1 km), implying that global models currently used to assess the carbon cycles will be missing these processes

    Circulating resistin levels and risk of multiple myeloma in three prospective cohorts

    Get PDF
    BACKGROUND: Resistin is a polypeptide hormone secreted by adipose tissue. A prior hospital-based case-control study reported serum resistin levels to be inversely associated with risk of multiple myeloma (MM). To date, this association has not been investigated prospectively. METHODS: We measured resistin concentrations for pre-diagnosis peripheral blood samples from 178 MM cases and 358 individually matched controls from three cohorts participating in the MM cohort consortium. RESULTS: In overall analyses, higher resistin levels were weakly associated with reduced MM risk. For men, we observed a statistically significant inverse association between resistin levels and MM (odds ratio, 0.44; 95% confidence interval (CI) 0.24-0.83 and 0.54; 95% CI 0.29-0.99, for the third and fourth quartiles, respectively, vs the lowest quartile; Ptrend=0.03). No association was observed for women. CONCLUSIONS: This study provides the first prospective evidence that low circulating resistin levels may be associated with an increased risk of MM, particularly for men

    Intersubject Regularity in the Intrinsic Shape of Human V1

    Full text link
    Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 μm) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results
    corecore