1,685 research outputs found

    Structure-based vaccines for respiratory viruses

    Get PDF
    Respiratory syncytial virus (RSV) is an orthopneumovirus in the family Pneumoviridae. The fusion glycoprotein (F) is responsible for mediating viral entry and is the major antigenic target for RSV vaccine development. There are two major RSV subtypes, A and B, defined largely by genetic variation in the G glycoprotein. Recent advances in defining the structure of F-specific NT-sensitive epitopes and the structure of the prefusion (pre-F) and postfusion (post-F) conformations of F have led to a better understanding of neutralizing mechanisms, the serological responses to natural RSV infection and vaccination, pathogenesis of disease, mechanisms of viral inactivation, and the importance of targeting pre-F surfaces with the vaccine antigen. The RSV program has also informed the development of improved vaccine antigens for other viruses that use class I fusion proteins like the coronavirus spike, influenza hemagglutinin, Ebola glycoprotein, HIV-1 gp160, and the F of other paramyxoviruses. The talk will review the structure and function of F, and describe the design, antigenicity, immunogenicity, and initial clinical data for the DS-Cav1 candidate RSV subunit vaccine based on a stabilized version of prefusion RSV F. In addition, antigen design strategies for coronaviruses and influenza will be reviewed

    Viruses, dendritic cells and the lung

    Get PDF
    The interaction between viruses and dendritic cells (DCs) is varied and complex. DCs are key elements in the development of a host response to pathogens such as viruses, but viruses have developed survival tactics to either evade or diminish the immune system that functions to kill and eliminate these micro-organisms. In the present review we summarize current concepts regarding the function of DCs in the immune system, our understanding of how viruses alter DC function to attenuate both the virus-specific and global immune response, and how we may be able to exploit DC function to prevent or treat viral infections

    Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state

    Get PDF
    Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV

    A phase IIA randomized clinical trial of a multiclade HIV-1 DNA prime followed by a multiclade rAd5 HIV-1 vaccine boost in healthy adults (HVTN204)

    Get PDF
    BACKGROUND: The safety and immunogenicity of a vaccine regimen consisting of a 6-plasmid HIV-1 DNA prime (envA, envB, envC, gagB, polB, nefB) boosted by a recombinant adenovirus serotype-5 (rAd5) HIV-1 with matching inserts was evaluated in HIV-seronegative participants from South Africa, United States, Latin America and the Caribbean. METHODS: 480 participants were evenly randomized to receive either: DNA (4 mg IM by Biojector) at 0, 1 and 2 months, followed by rAd5 (10 10 PU IM by needle/syringe) at 6 months; or placebo. Participants were monitored for reactogenicity and adverse events throughout the 12-month study. Peak and duration of HIV-specific humoral and cellular immune responses were evaluated after the prime and boost. RESULTS: The vaccine was well tolerated and safe. T-cell responses, detected by interferon-Ξ³ (IFN-Ξ³) ELISpot to global potential T-cell epitopes (PTEs) were observed in 70.8% (136/192) of vaccine recipients overall, most frequently to Gag (54.7%) and to Env (54.2%). In U.S. vaccine recipients T-cell responses were less frequent in Ad5 sero-positive versus sero-negative vaccine recipients (62.5% versus 85.7% respectively, pβ€Š=β€Š0.035). The frequency of HIV-specific CD4+ and CD8+ T-cell responses detected by intracellular cytokine staining were similar (41.8% and 47.2% respectively) and most secreted β‰₯2 cytokines. The vaccine induced a high frequency (83.7%-94.6%) of binding antibody responses to consensus Group M, and Clades A, B and C gp140 Env oligomers. Antibody responses to Gag were elicited in 46% of vaccine recipients. CONCLUSION: The vaccine regimen was well-tolerated and induced polyfunctional CD4+ and CD8+ T-cells and multi-clade anti-Env binding antibodies. Trial Registration: ClinicalTrials.gov NCT0012597

    Use of Hemagglutinin Stem Probes Demonstrate Prevalence of Broadly Reactive Group 1 Influenza Antibodies in Human Sera.

    Get PDF
    A better understanding of the seroprevalence and specificity of influenza HA stem-directed broadly neutralizing antibodies (bNAbs) in the human population could significantly inform influenza vaccine design efforts. Here, we utilized probes comprising headless, HA stabilized stem (SS) to determine the prevalence, binding and neutralization breadth of antibodies directed to HA stem-epitope in a cross-sectional analysis of the general population. Five group-1 HA SS probes, representing five subtypes, were chosen for this analyses. Eighty-four percent of samples analyzed had specific reactivity to at least one probe, with approximately 60% of the samples reactive to H1 probes, and up to 45% reactive to each of the non-circulating subtypes. Thirty percent of analyzed sera had cross-reactivity to at least four of five probes and this reactivity could be blocked by competing with F10 bNAb. Binding cross-reactivity in sera samples significantly correlated with frequency of H1H5 cross-reactive B cells. Interestingly, only 33% of the cross-reactive sera neutralized both H1N1 and H5N1 pseudoviruses. Cross-reactive and neutralizing antibodies were more prevalent in individuals >50 years of age. Our data demonstrate the need to use multiple HA-stem probes to assess for broadly reactive antibodies. Further, a universal vaccine could be designed to boost pre-existing B-cells expressing stem-directed bNAbs

    Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization

    Get PDF
    West Nile virions incorporate 180 envelope (E) proteins that orchestrate the process of virus entry and are the primary target of neutralizing antibodies. The E proteins of newly synthesized West Nile virus (WNV) are organized into trimeric spikes composed of pre-membrane (prM) and E protein heterodimers. During egress, immature virions undergo a protease-mediated cleavage of prM that results in a reorganization of E protein into the pseudo-icosahedral arrangement characteristic of mature virions. While cleavage of prM is a required step in the virus life cycle, complete maturation is not required for infectivity and infectious virions may be heterogeneous with respect to the extent of prM cleavage. In this study, we demonstrate that virion maturation impacts the sensitivity of WNV to antibody-mediated neutralization. Complete maturation results in a significant reduction in sensitivity to neutralization by antibodies specific for poorly accessible epitopes that comprise a major component of the human antibody response following WNV infection or vaccination. This reduction in neutralization sensitivity reflects a decrease in the accessibility of epitopes on virions to levels that fall below a threshold required for neutralization. Thus, in addition to a role in facilitating viral entry, changes in E protein arrangement associated with maturation modulate neutralization sensitivity and introduce an additional layer of complexity into humoral immunity against WNV

    Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus Infection

    Get PDF
    Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with severe acute respiratory syndrome (SARS)-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two Middle East respiratory syndrome (MERS)-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate the infection of human gut cells but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that the addition of exogenous trypsin also rescues HKU5-CoV, a second bat group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate the emergence potential of bat CoVs and offers a means to recover previously unrecoverable zoonotic CoV strains. IMPORTANCE Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding and proteolytic cleavage of the spike are critical factors that must be considered for evaluating the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue that other tissues, including the digestive tract, could be a site for future coronavirus emergence events in humans

    A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats

    Get PDF
    ABSTRACT Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (Ξ”SH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-Ξ”SH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log 10 total PFU and 2.7 log 10 PFU/g of tissue, respectively, compared to those in unvaccinated animals ( P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. IMPORTANCE RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by incorporating a low-fusion, subgroup B F protein in the genetic background of codon-deoptimized nonstructural protein genes and a deleted small hydrophobic protein gene. The resultant vaccine candidate, DB1, was attenuated, highly immunogenic, and protective against RSV challenge in cotton rats
    • …
    corecore