899 research outputs found

    Distinct forms of synaptic inhibition and neuromodulation regulate calretinin positive neuron excitability in the spinal cord dorsal horn

    Get PDF
    The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH

    A model of ant route navigation driven by scene familiarity

    Get PDF
    In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that do not specify when or what to learn, nor separate routes into sequences of waypoints

    Optical calibration hardware for the Sudbury Neutrino Observatory

    Full text link
    The optical properties of the Sudbury Neutrino Observatory (SNO) heavy water Cherenkov neutrino detector are measured in situ using a light diffusing sphere ("laserball"). This diffuser is connected to a pulsed nitrogen/dye laser via specially developed underwater optical fibre umbilical cables. The umbilical cables are designed to have a small bending radius, and can be easily adapted for a variety of calibration sources in SNO. The laserball is remotely manipulated to many positions in the D2O and H2O volumes, where data at six different wavelengths are acquired. These data are analysed to determine the absorption and scattering of light in the heavy water and light water, and the angular dependence of the response of the detector's photomultiplier tubes. This paper gives details of the physical properties, construction, and optical characteristics of the laserball and its associated hardware.Comment: 17 pages, 8 figures, submitted to Nucl. Inst. Meth.

    Mandatory training in aged care- issues for Australian organisations and workers

    Get PDF
    There are significant issues related to the implementation of Mandatory Compliance Training in Not For Profit Aged Care provision in Australia. This paper provides an overview of those issues through an autoethnographic approach based on my 4 decades as an educator. It critiques the application of Mandatory Compliance Training using contemporary understandings of adult learning

    Multicanonical Multigrid Monte Carlo

    Full text link
    To further improve the performance of Monte Carlo simulations of first-order phase transitions we propose to combine the multicanonical approach with multigrid techniques. We report tests of this proposition for the dd-dimensional Ί4\Phi^4 field theory in two different situations. First, we study quantum tunneling for d=1d = 1 in the continuum limit, and second, we investigate first-order phase transitions for d=2d = 2 in the infinite volume limit. Compared with standard multicanonical simulations we obtain improvement factors of several resp. of about one order of magnitude.Comment: 12 pages LaTex, 1 PS figure appended. FU-Berlin preprint FUB-HEP 9/9

    Higgs Signal for h to aa at Hadron Colliders

    Full text link
    We assess the prospect of observing a neutral Higgs boson at hadron colliders in its decay to two spin-zero states, a, for a Higgs mass of 90-130 GeV, when produced in association with a W or Z boson. Such a decay is allowed in extensions of the MSSM with CP-violating interactions and in the NMSSM, and can dominate Higgs boson final states, thereby evading the LEP constraints on standard Higgs boson production. The light spin-zero state decays primarily via a to bb and tau+tau-, so this signal channel retains features distinct from the main backgrounds. Our study shows that at the Tevatron, there may be potential to observe a few events in the bb tau+tau- or bbbb channels with relatively small background, although this observation would be statistically limited. At the LHC, the background problem is more severe, but with cross sections and integrated luminosities orders of magnitude larger than at the Tevatron, the observation of a Higgs boson in this decay mode would be possible. The channel h to aa to bbbb would provide a large statistical significance, with a signal-to-background ratio on the order of 1:2. In these searches, the main challenge would be to retain the adequate tagging efficiency of b's and tau's in the low p_T region.Comment: Version to be published in JHEP. 20 pages, 5 figure

    Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length

    Full text link
    We consider, by means of the variational approximation (VA) and direct numerical simulations of the Gross-Pitaevskii (GP) equation, the dynamics of 2D and 3D condensates with a scattering length containing constant and harmonically varying parts, which can be achieved with an ac magnetic field tuned to the Feshbach resonance. For a rapid time modulation, we develop an approach based on the direct averaging of the GP equation,without using the VA. In the 2D case, both VA and direct simulations, as well as the averaging method, reveal the existence of stable self-confined condensates without an external trap, in agreement with qualitatively similar results recently reported for spatial solitons in nonlinear optics. In the 3D case, the VA again predicts the existence of a stable self-confined condensate without a trap. In this case, direct simulations demonstrate that the stability is limited in time, eventually switching into collapse, even though the constant part of the scattering length is positive (but not too large). Thus a spatially uniform ac magnetic field, resonantly tuned to control the scattering length, may play the role of an effective trap confining the condensate, and sometimes causing its collapse.Comment: 7 figure

    Functional and molecular analysis of proprioceptive sensory neuron excitability in mice

    Get PDF
    Neurons located in dorsal root ganglia (DRG) are crucial for transmitting peripheral sensations such as proprioception, touch, temperature, and nociception to the spinal cord before propagating these signals to higher brain structures. To date, difficulty in identifying modality-specific DRG neurons has limited our ability to study specific populations in detail. As the calcium-binding protein parvalbumin (PV) is a neurochemical marker for proprioceptive DRG cells we used a transgenic mouse line expressing green fluorescent protein (GFP) in PV positive DRGs, to study the functional and molecular properties of putative proprioceptive neurons. Immunolabeled DRGs showed a 100% overlap between GFP positive (GFP+) and PV positive cells, confirming the PVeGFP mouse accurately labeled PV neurons. Targeted patch-clamp recording from isolated GFP+ and GFP negative (GFP−) neurons showed the passive membrane properties of the two groups were similar, however, their active properties differed markedly. All GFP+ neurons fired a single spike in response to sustained current injection and their action potentials (APs) had faster rise times, lower thresholds and shorter half widths. A hyperpolarization-activated current (Ih) was observed in all GFP+ neurons but was infrequently noted in the GFP− population (100% vs. 11%). For GFP+ neurons, Ih activation rates varied markedly, suggesting differences in the underlying hyperpolarization-activated cyclic nucleotide-gated channel (HCN) subunit expression responsible for the current kinetics. Furthermore, quantitative polymerase chain reaction (qPCR) showed the HCN subunits 2, 1, and 4 mRNA (in that order) was more abundant in GFP+ neurons, while HCN 3 was more highly expressed in GFP− neurons. Likewise, immunolabeling confirmed HCN 1, 2, and 4 protein expression in GFP+ neurons. In summary, certain functional properties of GFP+ and GFP− cells differ markedly, providing evidence for modality-specific signaling between the two groups. However, the GFP+ DRG population demonstrates considerable internal heterogeneity when hyperpolarization-activated cyclic nucleotide-gated channel (HCN channel) properties and subunit expression are considered. We propose this heterogeneity reflects the existence of different peripheral receptors such as tendon organs, muscle spindles or mechanoreceptors in the putative proprioceptive neuron population

    Phenomenology of the General NMSSM with Gauge Mediated Supersymmetry Breaking

    Get PDF
    We investigate various classes of Gauge Mediated Supersymmetry Breaking models and show that the Next-to-Minimal Supersymmetric Standard Model can solve the mu-problem in a phenomenologically acceptable way. These models include scenarios with singlet tadpole terms, which are phenomenologically viable, e.g., in the presence of a small Yukawa coupling <~ 10^{-5}. Scenarios with suppressed trilinear A-terms at the messenger scale lead naturally to light CP-odd scalars, which play the r\^ole of pseudo R-axions. A wide range of parameters of such models satisfies LEP constraints, with CP-even Higgs scalars below 114 GeV decaying dominantly into a pair of CP-odd scalars.Comment: 24 pages, 6 figures, typos corrected, reference adde
    • 

    corecore