148 research outputs found

    Crosstalk between histone modifications and DNA methylation in patients with intellectual disability due to JARID1C mutations

    Get PDF
    CCMG Oral Abstract Presentations – Commonwealth A: A01The X-linked gene, JARID1C, encodes a H3K4 demethylase. Mutations in this gene cause intellectual disability (ID). We hypothesized that JARID1C mutations would dysregulate DNA methylation at specific genomic targets ...postprintThe 34th Annual Scientific Meeting of the Canadian College of Medical Geneticists (CCMG 2010), Halifax, NS., 21-23 October 2010. In Abstract Book of the 34th CCMG, 2010, p.

    The health risks of ART

    Full text link

    Multisite verification of the accuracy of a multi-gene next generation sequencing panel for detection of mutations and copy number alterations in solid tumours

    Get PDF
    Molecular variants including single nucleotide variants (SNVs), copy number variants (CNVs) and fusions can be detected in the clinical setting using deep targeted sequencing. These assays support low limits of detection using little genomic input material. They are gaining in popularity in clinical laboratories, where sample volumes are limited, and low variant allele fractions may be present. However, data on reproducibility between laboratories is limited. Using a ring study, we evaluated the performance of 7 Ontario laboratories using targeted sequencing panels. All laboratories analysed a series of control and clinical samples for SNVs/CNVs and gene fusions. High concordance was observed across laboratories for measured CNVs and SNVs. Over 97% of SNV calls in clinical samples were detected by all laboratories. Whilst only a single CNV was detected in the clinical samples tested, all laboratories were able to reproducibly report both the variant and copy number. Concordance for information derived from RNA was lower than observed for DNA, due largely to decreased quality metrics associated with the RNA components of the assay, suggesting that the RNA portions of comprehensive NGS assays may be more vulnerable to variations in approach and workflow. Overall the results of this study support the use of the OFA for targeted sequencing for testing of clinical samples and suggest specific internal quality metrics that can be reliable indicators of assay failure. While we believe this evidence can be interpreted to support deep targeted sequencing in general, additional studies should be performed to confirm this

    Multisite verification of the accuracy of a multi-gene next generation sequencing panel for detection of mutations and copy number alterations in solid tumours

    Get PDF
    Molecular variants including single nucleotide variants (SNVs), copy number variants (CNVs) and fusions can be detected in the clinical setting using deep targeted sequencing. These assays support low limits of detection using little genomic input material. They are gaining in popularity in clinical laboratories, where sample volumes are limited, and low variant allele fractions may be present. However, data on reproducibility between laboratories is limited. Using a ring study, we evaluated the performance of 7 Ontario laboratories using targeted sequencing panels. All laboratories analysed a series of control and clinical samples for SNVs/CNVs and gene fusions. High concordance was observed across laboratories for measured CNVs and SNVs. Over 97% of SNV calls in clinical samples were detected by all laboratories. Whilst only a single CNV was detected in the clinical samples tested, all laboratories were able to reproducibly report both the variant and copy number. Concordance for information derived from RNA was lower than observed for DNA, due largely to decreased quality metrics associated with the RNA components of the assay, suggesting that the RNA portions of comprehensive NGS assays may be more vulnerable to variations in approach and workflow. Overall the results of this study support the use of the OFA for targeted sequencing for testing of clinical samples and suggest specific internal quality metrics that can be reliable indicators of assay failure. While we believe this evidence can be interpreted to support deep targeted sequencing in general, additional studies should be performed to confirm this

    SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder

    Full text link
    Background: Posttraumatic stress disorder (PTSD) is a common and debilitating mental disorder that occurs following exposure to a traumatic event. However, most individuals do not develop PTSD following even a severe trauma, leading to a search for new variables, such as genetic and other molecular variation, associated with vulnerability and resilience in the face of trauma exposure. Method: We examined whether serotonin transporter (SLC6A4) promoter genotype and methylation status modified the association between number of traumatic events experienced and PTSD in a subset of 100 individuals from the Detroit Neighborhood Health Study. Results: Number of traumatic events was strongly associated with risk of PTSD. Neither SLC6A4 genotype nor methylation status was associated with PTSD in main effects models. However, SLC6A4 methylation levels modified the effect of the number of traumatic events on PTSD after controlling for SLC6A4 genotype. Persons with more traumatic events were at increased risk for PTSD, but only at lower methylation levels. At higher methylation levels, individuals with more traumatic events were protected from this disorder. This interaction was observed whether the outcome was PTSD diagnosis, symptom severity, or number of symptoms. Conclusions: Gene‐specific methylation patterns may offer potential molecular signatures of increased risk for and resilience to PTSD. Depression and Anxiety, 2011.  © 2011 Wiley‐Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87125/1/20825_ftp.pd

    Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith–Wiedemann syndrome and Silver–Russell syndrome

    Get PDF
    Hyper- and hypomethylation at the IGF2-H19 imprinting control region (ICR) result in reciprocal changes in IGF2-H19 expression and the two contrasting growth disorders, Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). DNA methylation of the ICR controls the reciprocal imprinting of IGF2 and H19 by preventing the binding of the insulator protein, CTCF. We here show that local changes in histone modifications and CTCF–cohesin binding at the ICR in BWS and SRS together with DNA methylation correlate with the higher order chromatin structure at the locus. In lymphoblastoid cells from control individuals, we found the repressive histone H3K9me3 and H4K20me3 marks associated with the methylated paternal ICR allele and the bivalent H3K4me2/H3K27me3 mark together with H3K9ac and CTCF–cohesin associated with the non-methylated maternal allele. In patient-derived cell lines, the mat/pat asymmetric distribution of these epigenetic marks was lost with H3K9me3 and H4K20me3 becoming biallelic in the BWS and H3K4me2, H3K27me3 and H3K9ac together with CTCF–cohesin becoming biallelic in the SRS. We further show that in BWS and SRS cells, there is opposing chromatin looping conformation mediated by CTCF–cohesin binding sites surrounding the locus. In normal cells, lack of CTCF–cohesin binding at the paternal ICR is associated with monoallelic interaction between two CTCF sites flanking the locus. CTCF–cohesin binding at the maternal ICR blocks this interaction by associating with the CTCF site downstream of the enhancers. The two alternative chromatin conformations are differently favoured in BWS and SRS likely predisposing the locus to the activation of IGF2 or H19, respectively

    A Pan-Canadian Validation Study for the Detection of EGFR T790M Mutation Using Circulating Tumor DNA From Peripheral Blood

    Get PDF
    Introduction: Genotyping circulating tumor DNA (ctDNA) is a promising noninvasive clinical tool to identify the EGFR T790M resistance mutation in patients with advanced NSCLC with resistance to EGFR inhibitors. To facilitate standardization and clinical adoption of ctDNA testing across Canada, we developed a 2-phase multicenter study to standardize T790M mutation detection using plasma ctDNA testing. Methods: In phase 1, commercial reference standards were distributed to participating clinical laboratories, to use their existing platforms for mutation detection. Baseline performance characteristics were established using known and blinded engineered plasma samples spiked with predetermined concentrations of T790M, L858R, and exon 19 deletion variants. In phase II, peripheral blood collected from local patients with known EGFR activating mutations and progressing on treatment were assayed for the presence of EGFR variants and concordance with a clinically validated test at the reference laboratory. Results: All laboratories in phase 1 detected the variants at 0.5 % and 5.0 % allele frequencies, with no false positives. In phase 2, the concordance with the reference laboratory for detection of both the primary and resistance mutation was high, with next-generation sequencing and droplet digital polymerase chain reaction exhibiting the best overall concordance. Data also suggested that the ability to detect mutations at clinically relevant limits of detection is generally not platform-specific, but rather impacted by laboratory-specific practices. Conclusions: Discrepancies among sending laboratories using the same assay suggest that laboratory-specific practices may impact performance. In addition, a negative or inconclusive ctDNA test should be followed by tumor testing when possible
    corecore