3,529 research outputs found
The Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries
We perform Bayesian analysis of gravitational-wave signals from non-spinning,
intermediate-mass black-hole binaries (IMBHBs) with observed total mass,
, from to and
mass ratio 1\mbox{--}4 using advanced LIGO and Virgo detectors. We employ
inspiral-merger-ringdown waveform models based on the effective-one-body
formalism and include subleading modes of radiation beyond the leading
mode. The presence of subleading modes increases signal power for inclined
binaries and allows for improved accuracy and precision in measurements of the
masses as well as breaking of extrinsic parameter degeneracies. For low total
masses, , the observed chirp
mass ( being the
symmetric mass ratio) is better measured. In contrast, as increasing power
comes from merger and ringdown, we find that the total mass
has better relative precision than . Indeed, at high
(), the signal resembles a
burst and the measurement thus extracts the dominant frequency of the signal
that depends on . Depending on the binary's inclination, at
signal-to-noise ratio (SNR) of , uncertainties in can be
as large as \sim 20 \mbox{--}25\% while uncertainties in are \sim 50 \mbox{--}60\% in binaries with unequal masses (those
numbers become versus in more symmetric binaries).
Although large, those uncertainties will establish the existence of IMBHs. Our
results show that gravitational-wave observations can offer a unique tool to
observe and understand the formation, evolution and demographics of IMBHs,
which are difficult to observe in the electromagnetic window. (abridged)Comment: 17 pages, 9 figures, 2 tables; updated to reflect published versio
High Energy Variability Of Synchrotron-Self Compton Emitting Sources: Why One Zone Models Do Not Work And How We Can Fix It
With the anticipated launch of GLAST, the existing X-ray telescopes, and the
enhanced capabilities of the new generation of TeV telescopes, developing tools
for modeling the variability of high energy sources such as blazars is becoming
a high priority. We point out the serious, innate problems one zone
synchrotron-self Compton models have in simulating high energy variability. We
then present the first steps toward a multi zone model where non-local, time
delayed Synchrotron-self Compton electron energy losses are taken into account.
By introducing only one additional parameter, the length of the system, our
code can simulate variability properly at Compton dominated stages, a situation
typical of flaring systems. As a first application, we were able to reproduce
variability similar to that observed in the case of the puzzling `orphan' TeV
flares that are not accompanied by a corresponding X-ray flare.Comment: to appear in the 1st GLAST symposium proceeding
No nearby counterparts to the moving objects in the Hubble Deep Field
Ibata et al (1999) have recently discovered faint, moving objects in the
Hubble Deep Field. The quantity, magnitudes and proper motions of these objects
are consistent with old white dwarfs making up the Galactic dark halo. We
review a number of ground-based proper motion surveys in which nearby dark halo
white dwarfs might be present, if they have the colours and absolute magnitudes
proposed. No such objects have been found, whereas we argue here that several
times more would be expected than in the Hubble Deep Field. We conclude it is
unlikely that hydrogen atmosphere white dwarfs make up a significant fraction
of the halo dark matter. No limits can be placed yet on helium atmosphere
dwarfs from optical searches.Comment: 7 pages, 4 figures, MNRAS LaTeX forma
MACHOs, White Dwarfs, and the Age of the Universe
(Abridged Abstract) A favored interpretation of recent microlensing
measurements towards the Large Magellanic Cloud implies that a large fraction
(i.e. 10--50%) of the mass of the galactic halo is composed of white dwarfs. We
compare model white dwarf luminosity functions to the data from the
observational surveys in order to determine a lower bound on the age of any
substantial white dwarf halo population (and hence possibly on the age of the
Universe). We compare various theoretical white dwarf luminosity functions, in
which we vary hese three parameters, with the abovementioned survey results.
From this comparison, we conclude that if white dwarfs do indeed constitute
more than 10% of the local halo mass density, then the Universe must be at
least 10 Gyr old for our most extreme allowed values of the parameters. When we
use cooling curves that account for chemical fractionation and more likely
values of the IMF and the bolometric correction, we find tighter limits: a
white dwarf MACHO fraction of 10% (30%) requires a minimum age of 14 Gyr (15.5
Gyr). Our analysis also indicates that the halo white dwarfs almost certainly
have helium-dominated atmospheres.Comment: Final version accepted for publication, straight TeX formate, 6 figs,
22 page
Chemical Abundance Constraints on White Dwarfs as Halo Dark Matter
We examine the chemical abundance constraints on a population of white dwarfs
in the Halo of our Galaxy. We are motivated by microlensing evidence for
massive compact halo objects (Machos) in the Galactic Halo, but our work
constrains white dwarfs in the Halo regardless of what the Machos are. We focus
on the composition of the material that would be ejected as the white dwarfs
are formed; abundance patterns in the ejecta strongly constrain white dwarf
production scenarios. Using both analytical and numerical chemical evolution
models, we confirm that very strong constraints come from Galactic Pop II and
extragalactic carbon abundances. We also point out that depending on the
stellar model, significant nitrogen is produced rather than carbon. The
combined constraints from C and N give from
comparison with the low C and N abundances in the Ly forest. We note,
however, that these results are subject to uncertainties regarding the
nucleosynthesis of low-metallicity stars. We thus investigate additional
constraints from D and He, finding that these light elements can be kept
within observational limits only for \Omega_{WD} \la 0.003 and for a white
dwarf progenitor initial mass function sharply peaked at low mass (2).
Finally, we consider a Galactic wind, which is required to remove the ejecta
accompanying white dwarf production from the galaxy. We show that such a wind
can be driven by Type Ia supernovae arising from the white dwarfs themselves,
but these supernovae also lead to unacceptably large abundances of iron. We
conclude that abundance constraints exclude white dwarfs as Machos. (abridged)Comment: Written in AASTeX, 26 pages plus 4 ps figure
Direct Detection of Giant Close-In Planets Around the Source Stars of Caustic-Crossing Microlensing Events
We propose a direct method to detect close-in giant planets orbiting stars in
the Galactic bulge. This method uses caustic-crossing binary microlensing
events discovered by survey teams monitoring the bulge to measure light from a
planet orbiting the source star. When the planet crosses the caustic, it is
more magnified than the source star; its light is magnified by two orders of
magnitude for Jupiter size planets. If the planet is a giant close to the star,
it may be bright enough to make a significant deviation in the light curve of
the star. Detection of this deviation requires intensive monitoring of the
microlensing light curve using a 10-meter class telescope for a few hours after
the caustic. This is the only method yet proposed to directly detect close-in
planets around stars outside the solar neighborhood.Comment: 4 pages, 2 figures. Submitted to ApJ Letter
A multi-zone model for simulating the high energy variability of TeV blazars
We present a time-dependent multi-zone code for simulating the variability of
Synchrotron-Self Compton (SSC) sources. The code adopts a multi-zone pipe
geometry for the emission region, appropriate for simulating emission from a
standing or propagating shock in a collimated jet. Variations in the injection
of relativistic electrons in the inlet propagate along the length of the pipe
cooling radiatively. Our code for the first time takes into account the
non-local, time-retarded nature of synchrotron self-Compton (SSC) losses that
are thought to be dominant in TeV blazars. The observed synchrotron and SSC
emission is followed self-consistently taking into account light travel time
delays. At any given time, the emitting portion of the pipe depends on the
frequency and the nature of the variation followed. Our simulation employs only
one additional physical parameter relative to one-zone models, that of the pipe
length and is computationally very efficient, using simplified expressions for
the SSC processes. The code will be useful for observers modeling GLAST, TeV,
and X-ray observations of SSC blazars.Comment: ApJ, accepte
Angular Radii of Stars via Microlensing
We outline a method by which the angular radii of giant and main sequence
stars in the Galactic bulge can be measured to a few percent accuracy. The
method combines ground-based photometry of caustic-crossing bulge microlensing
events, with a handful of precise astrometric measurements of the lensed star
during the event, to measure the angular radius of the source, theta_*. Dense
photometric coverage of one caustic crossing yields the crossing timescale dt.
Less frequent coverage of the entire event yields the Einstein timescale t_E
and the angle phi of source trajectory with respect to the caustic. The
photometric light curve solution predicts the motion of the source centroid up
to an orientation on the sky and overall scale. A few precise astrometric
measurements therefore yield theta_E, the angular Einstein ring radius. Then
the angular radius of the source is obtained by theta_*=theta_E(dt/t_E)
sin(phi). We argue that theta_* should be measurable to a few percent accuracy
for Galactic bulge giant stars using ground-based photometry from a network of
small (1m-class) telescopes, combined with astrometric observations with a
precision of ~10 microarcsec to measure theta_E. We find that a factor of ~50
times fewer photons are required to measure theta_E to a given precision for
binary-lens events than single-lens events. Adopting parameters appropriate to
the Space Interferometry Mission (SIM), ~7 min of SIM time is required to
measure theta_E to ~5% accuracy for giant sources in the bulge. For
main-sequence sources, theta_E can be measured to ~15% accuracy in ~1.4 hours.
With 10 hrs of SIM time, it should be possible to measure theta_* to ~5% for
\~80 giant stars, or to 15% for ~7 main sequence stars. A byproduct of such a
campaign is a significant sample of precise binary-lens mass measurements.Comment: 13 pages, 3 figures. Revised version, minor changes, required SIM
integration times revised upward by ~60%. Accepted to ApJ, to appear in the
March 20, 2003 issue (v586
Supplement: Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up
This is a supplement to the Letter of Singer et al.
(https://arxiv.org/abs/1603.07333), in which we demonstrated a rapid algorithm
for obtaining joint 3D estimates of sky location and luminosity distance from
observations of binary neutron star mergers with Advanced LIGO and Virgo. We
argued that combining the reconstructed volumes with positions and redshifts of
possible host galaxies can provide large-aperture but small field of view
instruments with a manageable list of targets to search for optical or infrared
emission. In this Supplement, we document the new HEALPix-based file format for
3D localizations of gravitational-wave transients. We include Python sample
code to show the reader how to perform simple manipulations of the 3D sky maps
and extract ranked lists of likely host galaxies. Finally, we include
mathematical details of the rapid volume reconstruction algorithm.Comment: For associated data release, see
http://asd.gsfc.nasa.gov/Leo.Singer/going-the-distanc
Early Advanced LIGO binary neutron-star sky localization and parameter estimation
2015 will see the first observations of Advanced LIGO and the start of the
gravitational-wave (GW) advanced-detector era. One of the most promising
sources for ground-based GW detectors are binary neutron-star (BNS)
coalescences. In order to use any detections for astrophysics, we must
understand the capabilities of our parameter-estimation analysis. By simulating
the GWs from an astrophysically motivated population of BNSs, we examine the
accuracy of parameter inferences in the early advanced-detector era. We find
that sky location, which is important for electromagnetic follow-up, can be
determined rapidly (~5 s), but that sky areas may be hundreds of square
degrees. The degeneracy between component mass and spin means there is
significant uncertainty for measurements of the individual masses and spins;
however, the chirp mass is well measured (typically better than 0.1%).Comment: 4 pages, 2 figures. Published in the proceedings of Amaldi 1
- …