We present a time-dependent multi-zone code for simulating the variability of
Synchrotron-Self Compton (SSC) sources. The code adopts a multi-zone pipe
geometry for the emission region, appropriate for simulating emission from a
standing or propagating shock in a collimated jet. Variations in the injection
of relativistic electrons in the inlet propagate along the length of the pipe
cooling radiatively. Our code for the first time takes into account the
non-local, time-retarded nature of synchrotron self-Compton (SSC) losses that
are thought to be dominant in TeV blazars. The observed synchrotron and SSC
emission is followed self-consistently taking into account light travel time
delays. At any given time, the emitting portion of the pipe depends on the
frequency and the nature of the variation followed. Our simulation employs only
one additional physical parameter relative to one-zone models, that of the pipe
length and is computationally very efficient, using simplified expressions for
the SSC processes. The code will be useful for observers modeling GLAST, TeV,
and X-ray observations of SSC blazars.Comment: ApJ, accepte