3,956 research outputs found

    Apollo 17 EVA-1 and EVA-2 Task Decomposition: Planning for Artemis and Future Mars Missions

    Get PDF
    A decomposition of the Apollo 17 mission extravehicular activities (EVA) tasks can be used to prepare for Artemis and future Mars missions. A categorized minute by minute breakdown of the astronauts activites could be used to plan future EVAs and determine which scientific tasks or equipment may be prioritized. This is especially relevant in this critical stage for the upcoming Atemis missions and science activity planning. The infographics generated from the decomposition provide a higher level view of actual EVAs and could aid in making future EVAs more efficient and successful

    X-ray Amorphous Components of Antarctica Dry Valley Soils: Weathering Implications for Mars

    Get PDF
    The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation usually occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20C [1]. Substantial work has focused on soil formation in the ADVs [2], however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented [3]. The occurrence of chemical weathering processes are suggested by the presence of clay minerals and iron and titanium oxides in soil. Previously we have investigated soils from two sites in the ADVs and have shown evidence of chemical weathering by the presence of clay minerals (vermiculite, smectite), short-range ordered (SRO) and/or X-ray amorphous materials, and Fe- and Tioxides as well as the presence of discrete calcite crystals [4, 5]. The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 wt. %) of X-ray amorphous materials in a windblown deposit or soil (Rocknest) and in a sedimentary rocks [6,7,8]. The occurrence of large amounts of X-ray amorphous materials in Mars sediments is surprising because these materials are usually present in small quantities in terrestrial environments. The objective of this study is to further characterize the chemistry and mineralogy, specifically the secondary alteration mineralogy and the presence of X-ray amorphous material, of soils from two sites we have previously studied, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. While the chemical alteration processes and mineralogy of the ADV has been documented previously, there has been limited discussion on the occurrence and formation of X-ray amorphous and SRO materials in Antarctica soils. The process of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars, and may lead to a better understanding to the abundance of amorphous material found in sediments in Gale crater

    Increased Science Instrumentation Funding Strengthens Mars Program

    Get PDF
    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest

    Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Get PDF
    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of ~11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted

    Intellectual Property Management in Health and Agricultural Innovation: Executive Guide

    Get PDF
    Prepared by and for policy-makers, leaders of public sector research establishments, technology transfer professionals, licensing executives, and scientists, this online resource offers up-to-date information and strategies for utilizing the power of both intellectual property and the public domain. Emphasis is placed on advancing innovation in health and agriculture, though many of the principles outlined here are broadly applicable across technology fields. Eschewing ideological debates and general proclamations, the authors always keep their eye on the practical side of IP management. The site is based on a comprehensive Handbook and Executive Guide that provide substantive discussions and analysis of the opportunities awaiting anyone in the field who wants to put intellectual property to work. This multi-volume work contains 153 chapters on a full range of IP topics and over 50 case studies, composed by over 200 authors from North, South, East, and West. If you are a policymaker, a senior administrator, a technology transfer manager, or a scientist, we invite you to use the companion site guide available at http://www.iphandbook.org/index.html The site guide distills the key points of each IP topic covered by the Handbook into simple language and places it in the context of evolving best practices specific to your professional role within the overall picture of IP management

    Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices, Vol. 1

    Get PDF
    Prepared by and for policy-makers, leaders of public sector research establishments, technology transfer professionals, licensing executives, and scientists, this online resource offers up-to-date information and strategies for utilizing the power of both intellectual property and the public domain. Emphasis is placed on advancing innovation in health and agriculture, though many of the principles outlined here are broadly applicable across technology fields. Eschewing ideological debates and general proclamations, the authors always keep their eye on the practical side of IP management. The site is based on a comprehensive Handbook and Executive Guide that provide substantive discussions and analysis of the opportunities awaiting anyone in the field who wants to put intellectual property to work. This multi-volume work contains 153 chapters on a full range of IP topics and over 50 case studies, composed by over 200 authors from North, South, East, and West. If you are a policymaker, a senior administrator, a technology transfer manager, or a scientist, we invite you to use the companion site guide available at http://www.iphandbook.org/index.html The site guide distills the key points of each IP topic covered by the Handbook into simple language and places it in the context of evolving best practices specific to your professional role within the overall picture of IP management

    GeoLab Concept: The Importance of Sample Selection During Long Duration Human Exploration Mission

    Get PDF
    In the future when humans explore planetary surfaces on the Moon, Mars, and asteroids or beyond, the return of geologic samples to Earth will be a high priority for human spaceflight operations. All future sample return missions will have strict down-mass and volume requirements; methods for in-situ sample assessment and prioritization will be critical for selecting the best samples for return-to-Earth

    A Geology Sampling System for Small Bodies

    Get PDF
    Human exploration of Small Bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this Small Bodies category and some are being discussed as potential mission tar-gets. Obtaining geological samples for return to Earth will be a major objective for any mission to a Small Body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Furthermore, humans interacting with non-engineered surfaces in a microgravity environment poses unique challenges. In preparation for such missions, a team at the National Aeronautics and Space Administration (NASA) John-son Space Center (JSC) has been working to gain experience on how to safely obtain numerous sample types in such an environment. This abstract briefly summarizes the type of samples the science community is interested in, discusses an integrated geology sampling solution, and highlights some of the unique challenges associated with this type of exploration

    Black Hole Binary Formation in the Expanding Universe --- Three Body Problem Approximation ---

    Get PDF
    We study black hole MACHO binary formation through three-body interactions in the early universe at t∼10−5t\sim 10^{-5}s. The probability distribution functions of the eccentricity and the semimajor axis of binaries as well as of the coalescence time are obtained assuming that the black holes are randomly formed in space. We confirm that the previous order-of-magnitude estimate for the binary parameters is valid within ∼50\sim 50% error. We find that the coalescence rate of the black hole MACHO binaries is ∼5×10−2×2±1\sim 5 \times 10^{-2} \times 2^{\pm 1} events/year/galaxy taking into consideration several possible factors which may affect this estimate. This suggests that the event rate of coalescing binary black holes will be at least several events per year within 15 Mpc. The first LIGO/VIRGO interferometers in 2001 will be able to verify whether the MACHOs are black holes or not.Comment: Revtex, 25 pages, 10 figures, to appear in PR

    The 2010 ILSO-ISRU Field Test at Mauna Kea, Hawaii: Results from the Miniaturised Mossbauer Spectrometers Mimos II and Mimos IIA

    Get PDF
    For the advanced Moessbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform X-ray fluorescence analysis simultaneously to Moessbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The ISRU 2010 field campaign demonstrated that in-situ Moessbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments
    • …
    corecore