450 research outputs found

    Electrochemical Solutions for Advanced Life Support

    Get PDF
    The Oxygen Generating Assembly (OGA) on-board the International Space Station (ISS) employs a polymer electrolyte membrane (PEM) water electrolysis cell stack to electrochemically dissociate water into its two components oxygen and hydrogen. Oxygen is provided to the cabin atmosphere for crew respiration while the hydrogen is delivered to a carbon dioxide reduction system to recover oxygen as water. The design of the OGA evolved over a number of years to arrive at the system solution that is currently operational on ISS. Future manned missions to space will require advanced technologies that eliminate the need for resupply from earth and feature in-situ resource utilization to sustain crew life and to provide useful materials to the crew. The architects planning such missions should consider all potential solutions at their disposal to arrive at an optimal vehicle solution that minimizes crew maintenance time, launch weight, installed volume and energy consumption demands. Skyre is developing new technologies through funding from NASA, the Department of Energy, and internal investment based on PEM technology that could become an integral part of these new vehicle solutions. At varying stages of Technology Readiness Level (TRL) are: an oxygen concentrator and compressor that can separate oxygen from an air stream and provide an enriched oxygen resource for crew medical use and space suit recharge without any moving parts in the pure oxygen stream; a regenerative carbon dioxide removal system featuring a PEM-based sorbent regenerator; a carbon dioxide reduction system that electrochemically produces organic compounds that could serve as fuels or as a useful intermediary to more beneficial compounds; and an electrochemical hydrogen separator and compressor for hydrogen recycle. The technical maturity of these projects is presented along with pertinent performance test data that could be beneficial in future study efforts

    Assembly of root-associated Nā‚‚O-reducing communities of annual crops is governed by selection for nosZ Glade I over Glade II

    Get PDF
    The rhizosphere is a hotspot for denitrification. The nitrous oxide (Nā‚‚O) reductase among denitrifiers and nondenitrifying Nā‚‚O reducers is the only known Nā‚‚O sink in the biosphere. We hypothesized that the composition of root-associated Nā‚‚O-reducing communities when establishing on annual crops depend on soil type and plant species, but that assembly processes are independent of these factors and differ between nosZ clades I and II. Using a pot experiment with barley and sunflower and two soils, we analyzed the abundance, composition, and diversity of soil and root-associated Nā‚‚O reducing communities by qPCR and amplicon sequencing of nosZ. Clade I was more abundant on roots compared to soil, while clade II showed the opposite. In barley, this pattern coincided with Nā‚‚O availability, determined as potential Nā‚‚O production rates, but for sunflower no Nā‚‚O production was detected in the root compartment. Root and soil nosZ communities differed in composition and phylogeny-based community analyses indicated that assembly of root-associated Nā‚‚O reducers was driven by the interaction between plant and soil type, with inferred competition being more influential than habitat selection. Selection between clades I and II in the root/soil interface is suggested, which may have functional consequences since most clade I microorganisms can produce Nā‚‚O

    Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    Get PDF
    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems

    Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date.</p> <p>Results</p> <p>Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing Ī²-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter k<sub>cat </sub>and K<sub>M </sub>are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and Ī²-amylase k<sub>cat </sub>and K<sub>M </sub>for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to lower coupling between metabolic subsystems in different compartments.</p> <p>Conclusions</p> <p>We find that in the reference steady state, starch cleavage is the most significant determinant of carbon flux, with turnover of oligosaccharides playing a secondary role. Independence of stationary point with respect to initial dynamic variable values confirms a unique stationary point in the phase space of dynamically varying concentrations of the model network. Stromal maltooligosaccharide metabolism was highly coupled to the available starch concentration. From the most highly converged trajectories, distances between unique fixed points of phase spaces show that cytosolic maltose levels depend on the total concentrations of arabinogalactan and glucose present in the cytosol. In addition, cellular compartmentalization serves to dampen much, but not all, of the effects of one subnetwork on another, such that kinetic modeling of single compartments would likely capture most dynamics that are fast on the timescale of the transport reactions.</p

    The effect of the interlayer ordering on the Fermi surface of Kagome superconductor CsV3_3Sb5_5 revealed by quantum oscillations

    Full text link
    The connection between unconventional superconductivity and charge density waves (CDW) has intrigued the condensed matter community and found much interest in the recently discovered superconducting Kagome family of AV3_3Sb5_5 (A = K, Cs, Rb). Xray diffraction and Raman spectroscopy measurements established that the CDW order in CsV3_3Sb5_5 comprises of a 2x2x4 structure with stacking of layers of star-of-David (SD) and inverse-star-of-David (ISD) pattern along the cc-axis direction. Such interlayer ordering will induce a vast normalization of the electronic ground state; however, it has not been observed in Fermi surface measurements. Here we report quantum oscillations of CsV3_3Sb5_5 using tunnel diode oscillator frequency measurements. We observed a large number of frequencies, many of which were not reported. The number of frequencies can not be explained by DFT calculations when only SD or ISD distortion is considered. Instead, our results are consistent with calculations when interlayer ordering is taken into account, providing strong evidence that CDW phase of CsV3_3Sb5_5 has complicated structure distortion which in turn has dramatic effects on the Fermi surface properties.Comment: Accepted by Physical Review Letter

    Oral Administration of Levo-Tetrahydropalmatine Attenuates Reinstatement of Extinguished Cocaine Seeking by Cocaine, Stress or Drug-Associated Cues in Rats

    Get PDF
    Cocaine addiction is characterized by a persistently heightened susceptibility to drug relapse. For this reason, the identification of medications that prevent drug relapse is a critical goal of drug abuse research. Drug re-exposure, the onset of stressful life events, and exposure to cues previously associated with drug use have been identified as determinants of relapse in humans and have been found to reinstate extinguished cocaine seeking in rats. This study examined the effects of acute oral (gavage) administration of levo-tetrahydropalmatine (l-THP), a tetrahydroprotoberberine isoquinoline with a pharmacological profile that includes antagonism of D1, D2 and D3 dopamine receptors, on the reinstatement of extinguished cocaine seeking by a cocaine challenge (10 mg/kg, ip), a stressor (uncontrollable electric footshock [EFS]) or response-contingent exposure to a stimulus (tone and light complex) previously associated with drug delivery in male Spragueā€“Dawley rats. Extinguished drug seeking was reinstated by ip cocaine, EFS, or response-contingent presentation of drug-associated cues in vehicle-pretreated rats following extinction of iv cocaine self-adminisration. Oral administration of either 3.0 or 10.0 mg/kg l-THP 1 h prior to reinstatement testing significantly attenuated reinstatement by each of the stimuli. Food-reinforced responding and baseline post-extinction responding were significantly attenuated at the 10.0, but not the 3.0 mg/kg, l-THP dose, indicating that the effects of 3 mg/kg l-THP on reinstatement were likely independent of non-specific motor impairment. These findings further suggest that l-THP may have utility for the treatment of cocaine addiction

    Magnetic light

    Full text link
    In this paper we report on the observation of novel and highly unusual magnetic state of light. It appears that in small holes light quanta behave as small magnets so that light propagation through such holes may be affected by magnetic field. When arrays of such holes are made, magnetic light of the individual holes forms novel and highly unusual two-dimensional magnetic light material. Magnetic light may soon become a great new tool for quantum communication and computing.Comment: Submitted to Phys.Rev.Lett., 3 figure

    Extreme magnetic field-boosted superconductivity

    Full text link
    Applied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect and Bose-Einstein condensation of spin excitations. Superconductivity, on the other hand, is inherently antagonistic towards magnetic fields. Only in rare cases can these effects be mitigated over limited fields, leading to reentrant superconductivity. Here, we report the unprecedented coexistence of multiple high-field reentrant superconducting phases in the spin-triplet superconductor UTe2. Strikingly, we observe superconductivity in the highest magnetic field range identified for any reentrant superconductor, beyond 65 T. These extreme properties reflect a new kind of exotic superconductivity rooted in magnetic fluctuations and boosted by a quantum dimensional crossover

    Diabetes in pregnancy: a new decade of challenges ahead

    Get PDF
    Every 10 years, the Diabetic Pregnancy Study Group, a study group of the EASD, conducts an audit meeting to review the achievements of the preceding decade and to set the directions for research and clinical practice improvements for the next decade. The most recent meeting focused on the following areas: improving pregnancy outcomes for women with pregestational type 1 diabetes and type 2 diabetes; the influence of obesity and gestational diabetes on pregnancy outcomes; the determinants and assessment of fetal growth and development; and public health issues, including consideration of transgenerational consequences and economic burden. The audit meeting also considered the likely impact of 'omics' on research within the field and the potential of these technologies to enable precision-medicine approaches to management. Through sharing of the findings and ideas of audit meeting participants, the DPSG hopes to promote networking, research and advances in clinical care, to improve outcomes for all women and their offspring affected by diabetes and obesity in pregnancy
    • ā€¦
    corecore