Applied magnetic fields underlie exotic quantum states, such as the
fractional quantum Hall effect and Bose-Einstein condensation of spin
excitations. Superconductivity, on the other hand, is inherently antagonistic
towards magnetic fields. Only in rare cases can these effects be mitigated over
limited fields, leading to reentrant superconductivity. Here, we report the
unprecedented coexistence of multiple high-field reentrant superconducting
phases in the spin-triplet superconductor UTe2. Strikingly, we observe
superconductivity in the highest magnetic field range identified for any
reentrant superconductor, beyond 65 T. These extreme properties reflect a new
kind of exotic superconductivity rooted in magnetic fluctuations and boosted by
a quantum dimensional crossover