6 research outputs found

    Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration

    Get PDF
    Background & Aims: Excess liver iron content is common and is linked to hepatic and extrahepatic disease risk. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. Methods: First, we performed a genome-wide association study (GWAS) in 8,289 individuals in UK Biobank with MRI quantified liver iron, and validated our findings in an independent cohort (n=1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 29 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 anthropometric traits and diseases. Results: We identified three independent genetic variants (rs1800562 (C282Y) and rs1799945 (H63D) in HFE and rs855791 (V736A) in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p<5x10-8). The two HFE variants account for ~85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. Conclusion: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases

    Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin

    Get PDF
    Aims/hypothesis Individuals carrying variants of the transcription factor 7-like 2 gene (TCF7L2) are at increased risk for type 2 diabetes. These metabolic genetic risk factors have been linked to diminished pancreatic islet-cell responsiveness to incretins, thus pharmacological interventions aimed at amplifying endogenous incretin biology may be affected. However, clinical evidence from randomised controlled trials so far is lacking. We investigated the influence of TCF7L2 risk alleles on the response to treatment with the dipeptidylpeptidase-4 (DPP-4) inhibitor linagliptin from four 24 week, phase III, placebo-controlled trials. Methods Pharmacogenomic samples and clinical data were available from 961 patients with type 2 diabetes. Whole-blood DNA samples were genotyped for TCF7L2 single-nucleotide polymorphisms in conjunction with assessments of 24 week changes in HbA1c. Results Linagliptin lowered HbA1c meaningfully in all three genotypes of rs7903146 (non-risk variant carriers CC [n = 356]: −0.82% [−9.0 mmol/mol], p < 0.0001; heterozygous CT [n = 264]: −0.77% [−8.4 mmol/mol], p < 0.0001; homozygous risk variant carriers TT [n = 73]: −0.57% [−6.2 mmol/mol], p < 0.0006). No significant treatment differences were seen between CC and CT patients, although HbA1c response was reduced in TT compared with CC patients (~0.26% [~2.8 mmol/mol], p = 0.0182). Conclusions/interpretation Linagliptin significantly improved hyperglycaemia in patients with type 2 diabetes both with and without the TCF7L2 gene diabetes risk alleles. However, differences in treatment response were observed, indicating that diabetes susceptibility genes may be an important contributor to the inter-individual variability of treatment response.Accepted versio

    Linagliptin increases incretin levels, lowers glucagon, and improves glycemic control in type 2 diabetes mellitus

    Get PDF
    INTRODUCTION: Linagliptin is a xanthine-based dipeptidyl peptidase (DPP)-4 inhibitor that is now available in numerous countries worldwide for the treatment of type 2 diabetes mellitus (T2DM). The aim of this study was to evaluate further the mechanisms underlying the improvements in glycemic control observed with linagliptin. The effects of linagliptin on DPP-4, pharmacodynamic parameters, and glycemic control versus placebo were assessed in patients with inadequately controlled T2DM. METHODS: Patients in this phase 2a, multicenter, randomized, double-blind, placebo-controlled study received placebo (n = 40) or linagliptin 5 mg (n = 40). Sitagliptin 100 mg (n = 41) once daily for 4 weeks was included for exploratory purposes. Primary endpoints for linagliptin versus placebo: change from baseline to day 28 in 24-h weighted mean glucose (WMG) and intact glucagon-like peptide (GLP)-1 area under the time–effect curve between 0 and 2 h (AUEC(0–2h)) following meal tolerance test on day 28. RESULTS: Linagliptin increased intact GLP-1 AUEC(0–2h) (+18.1 pmol/h/L) and lowered 24-h WMG (−1.1 mmol/L) versus placebo (both P < 0.0001) after 28 days. Intact glucose-dependent insulinotropic polypeptide increased in line with GLP-1 (+91.4 pmol/h/L increase vs. placebo; P < 0.0001). Glycated hemoglobin (−0.22%; P = 0.0021), fasting plasma glucose (−0.6 mmol/L; P = 0.0283), and glucose (AUEC(0–3h)) (−5.9 mmol/h/L; P < 0.0001) improved significantly with linagliptin versus placebo. Most adverse events were mild; hypoglycemia or serious adverse events were not reported. Sustained DPP-4 inhibition (≥80%) throughout the treatment period was accompanied by significant reductions in glucagon starting at day 1 of linagliptin administration. CONCLUSION: Linagliptin was well tolerated and effectively inhibited plasma DPP-4 activity in patients with T2DM, producing immediate improvements in incretin levels, glucagon suppression, and glycemic control that were maintained throughout the study period
    corecore