544 research outputs found

    Functional Restoration of CFTR Nonsense Mutations in Intestinal Organoids

    Get PDF
    Background: Pharmacotherapies for people with cystic fibrosis (pwCF) who have premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are under development. Thus far, clinical studies focused on compounds that induce translational readthrough (RT) at the mRNA PTC location. Recent studies using primary airway cells showed that PTC functional restoration can be achieved through combining compounds with multiple mode-of-actions. Here, we assessed induction of CFTR function in PTC-containing intestinal organoids using compounds targeting RT, nonsense mRNA mediated decay (NMD) and CFTR protein modulation. Methods: Rescue of PTC CFTR protein was assessed by forskolin-induced swelling of 12 intestinal organoid cultures carrying distinct PTC mutations. Effects of compounds on mRNA CFTR level was assessed by RT-qPCRs. Results: Whilst response varied between donors, significant rescue of CFTR function was achieved for most donors with the quintuple combination of a commercially available pharmacological equivalent of the RT compound (ELX-02-disulfate or ELX-02ds), NMD inhibitor SMG1i, correctors VX-445 and VX-661 and potentiator VX-770. The quintuple combination of pharmacotherapies reached swelling quantities higher than the mean swelling of three VX-809/VX-770-rescued F508del/F508del organoid cultures, indicating level of rescue is of clinical relevance as VX-770/VX-809-mediated F508del/F508del rescue in organoids correlate with substantial improvement of clinical outcome. Conclusions: Whilst variation in efficacy was observed between genotypes as well as within genotypes, the data suggests that strong pharmacological rescue of PTC requires a combination of drugs that target RT, NMD and protein function

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia induces the proliferation of lung fibroblasts in vivo and in vitro. However, the subcellular interactions between hypoxia and expression of tumor suppressor p53 and cyclin-dependent kinase inhibitors p21 and p27 remain unclear.</p> <p>Methods</p> <p>Normal human lung fibroblasts (NHLF) were cultured in a hypoxic chamber or exposed to desferroxamine (DFX). DNA synthesis was measured using bromodeoxyuridine incorporation, and expression of p53, p21 and p27 was measured using real-time RT-PCR and Western blot analysis.</p> <p>Results</p> <p>DNA synthesis was increased by moderate hypoxia (2% oxygen) but was decreased by severe hypoxia (0.1% oxygen) and DFX. Moderate hypoxia decreased p21 synthesis without affecting p53 synthesis, whereas severe hypoxia and DFX increased synthesis of both p21 and p53. p27 protein expression was decreased by severe hypoxia and DFX. Gene silencing of p21 and p27 promoted DNA synthesis at ambient oxygen concentrations. p21 and p53 gene silencing lessened the decrease in DNA synthesis due to severe hypoxia or DFX exposure. p21 gene silencing prevented increased DNA synthesis in moderate hypoxia. p27 protein expression was significantly increased by p53 gene silencing, and was decreased by wild-type p53 gene transfection.</p> <p>Conclusion</p> <p>These results indicate that in NHLF, severe hypoxia leads to cell cycle arrest via the p53-p21 pathway, but that moderate hypoxia enhances cell proliferation via the p21 pathway in a p53-independent manner. In addition, our results suggest that p27 may be involved in compensating for p53 in cultured NHLF proliferation.</p

    Editorial of Special Issue of National Identities: Alevism as an ethno-religious identity: Contested boundaries

    Get PDF
    No abstract for editorial but this is the opening paragraph: This special issue on Alevism and trans/national Alevi identity critically engages with the relationship between religion, ethnicity and national identity. The core issues are as follows: β€’ how ethnicity and religion are conceptualised for a relatively invisible ethnic group in different national contexts; β€’ how religion and ethnicity intersect when Alevism is both a faith and an ethnic identity, especially when conceptions of that identity are contested; β€’ how identity is shaped through state policies within different national policy contexts and how etic definitions of minority communities are constructed by the state or other agencies with the power to impose them on the community in contrast to the emic or self-definitions of Aleviness from within the Alevi community; β€’ how despite the fragmented, heterogeneous nature of Alevi communities, there is also a sense of a single, transnational imaginary community, at least for the purposes of political assimilation/integration and activism; β€’ how education and other arenas of political, religious and cultural engagement at local, national and transnational levels create the possibilities, both positively and negatively, for future action/policy to situate minority ethnic communities

    Human recombinant erythropoietin (rEpo) has no effect on tumour growth or angiogenesis

    Get PDF
    Tumour hypoxia has been shown to increase mutation rate, angiogenesis, and metastatic potential, and decrease response to conventional therapeutics. Improved tumour oxygenation should translate into increased treatment response. Exogenous recombinant erythropoietin (rEpo) has been recently shown to increase tumour oxygenation in a mammary carcinoma model. The mechanism of this action is not yet understood completely. The presence of Epo and its receptor (EpoR) have been demonstrated on several normal and neoplastic tissues, including blood vessels and various solid tumours. In addition, rEpo has been shown in two recent prospective, randomized clinical trials to negatively impact treatment outcome. In this study, we attempt to characterize the direct effects of rEpo on tumour growth and angiogenesis in two separate rodent carcinomas. The effect of rEpo on R3230 rat mammary adenocarcinomas, CT-26 mouse colon carcinomas, HCT-116 human colon carcinomas, and FaDu human head and neck tumours, all of which express EpoR, was examined. There were no differences in tumour growth or proliferation (measured by Ki-67) between placebo-treated and rEpo-treated tumours. In the mammary window chamber, vascular length density (VLD) measurements in serial images of both placebo-treated and Epo-treated rats revealed no difference in angiogenesis between the Epo-treated tumours and placebo-treated tumours at any time point. These experiments are important because they suggest that the recent clinical detriment seen with the use of Epo is not due to its tumour growth effects or angiogenesis. These studies also suggest that further preclinical studies need to examine rEpo's direct tumour effects in efforts to improve the therapeutic benefits of Epo in solid tumour patients

    PathFinder: mining signal transduction pathway segments from protein-protein interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A Signal transduction pathway is the chain of processes by which a cell converts an extracellular signal into a response. In most unicellular organisms, the number of signal transduction pathways influences the number of ways the cell can react and respond to the environment. Discovering signal transduction pathways is an arduous problem, even with the use of systematic genomic, proteomic and metabolomic technologies. These techniques lead to an enormous amount of data and how to interpret and process this data becomes a challenging computational problem.</p> <p>Results</p> <p>In this study we present a new framework for identifying signaling pathways in protein-protein interaction networks. Our goal is to find biologically significant pathway segments in a given interaction network. Currently, protein-protein interaction data has excessive amount of noise, e.g., false positive and false negative interactions. First, we eliminate false positives in the protein-protein interaction network by integrating the network with microarray expression profiles, protein subcellular localization and sequence information. In addition, protein families are used to repair false negative interactions. Then the characteristics of known signal transduction pathways and their functional annotations are extracted in the form of association rules.</p> <p>Conclusion</p> <p>Given a pair of starting and ending proteins, our methodology returns candidate pathway segments between these two proteins with possible missing links (recovered false negatives). In our study, <it>S. cerevisiae </it>(yeast) data is used to demonstrate the effectiveness of our method.</p

    Synaptic Defects in the Spinal and Neuromuscular Circuitry in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΞ”7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΞ”7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3–5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΞ”7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΞ”7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΞ”7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy

    The molecular pathology of p53 in primitive neuroectodermal tumours of the central nervous system

    Get PDF
    One hundred and one pre-treatment primary central primitive neuroectodermal tumours were analysed for the expression of p53 protein by immunohistochemistry using the monoclonal antibody DO-7. The staining intensity was classified into four groups: strong, medium, weak and negative and strong staining intensity was associated with the poorest survival. DNA sequencing of the p53 gene was performed in 28 cases representing all four staining groups. Mutations were found in only three of the strong staining tumours suggesting that DNA mutations were not common events and that in the majority of the tumours with over-expressed p53, the protein was likely to be wild-type. Results of immunohistochemistry showed a significantly positive relationship between the expression of p53 and Bax and Bcl-2 proteins, but not Waf-1. Multivariate analyses supported the prognostic value of p53 immunostaining in central primitive neuroectodermal tumours and also of age and gender of patients

    Reciprocal influence of the p53 and the hypoxic pathways

    Get PDF
    When cells sense a decrease in oxygen availability (hypoxia), they develop adaptive responses in order to sustain this condition and survive. If hypoxia lasts too long or is too severe, the cells eventually die. Hypoxia is also known to modulate the p53 pathway, in a manner dependent or not of HIF-1 (hypoxia-inducible factor-1), the main transcription factor activated by hypoxia. The p53 protein is a transcription factor, which is rapidly stabilised by cellular stresses and which has a major role in the cell responses to these stresses. The aim of this review is to compile what has been reported until now about the interconnection between these two important pathways. Indeed, according to the cell line, the severity and the duration of hypoxia, oxygen deficiency influences very differently p53 protein level and activity. Conversely, p53 is also described to affect HIF-1Ξ± stability, one of the two subunits of HIF-1, and HIF-1 activity. The direct and indirect interactions between HIF-1Ξ± and p53 are described as well as the involvement in this complex network of their respective ubiquitin ligases von Hippel Lindau protein and murine double minute 2. Finally, the synergistic or antagonistic effects of p53 and HIF-1 on some important cellular pathways are discussed
    • …
    corecore