379 research outputs found
A Phylogenetic Analysis of the African Plant Genus Palisota (family Commelinaceae) based on Chloroplast DNA Sequences
The plant genus Palisota (family Commelinaceae, or spiderwort family) consists of approximately 20 species and is distributed throughout the forests of tropical Africa. The genus exhibits several unusual morphological characteristics, and as a result has been difficult to classify based on morphology. Molecular phylogenetic studies have placed it near the base of Commelinaceae, but the exact placement of Palisota within the family is not clear. As the African continent has become more arid in recent geological times, the forests have receded, reducing the habitat for Palisota species and potentially impacting speciation and extinction rates within the genus. The goal of this study is to sequence the chloroplast-encoded gene rbcL in several additional species of Palisota and its relatives in order to: 1) determine the phylogenetic relationship of the genus with respect to other members of Commelinaceae; 2) evaluate phylogenentic relationships among species of Palisota; and 3) infer relative speciation/extinction rates within the genus. Additionally, we are exploring the use of other molecular regions for phylogenetic analysis with the genus
The CR chondrite clan
The (1) CR chondrites, (2) LEW 85332,(3) Acfer 182,(4) ALH 85085-like chondrites, and (5) Bencubbin-like chondritic breccias are five kinds of chondritic groups which have dramatically different petrographic characteristics, but have mineralogical, bulk chemical, and oxygen and nitrogen isotopic similarities that indicate they are closely related. They are all considered to be members of what we term the CR chondrite clan. Distinguishing characteristics of CR clan chondrites include : (a) reduced, Mg-rich mafic silicates, (b) hydrous matrix and/or dark inclusions (except for Bencubbin-like chondrites), (c) high modal abundances of FeNi metal, (d) FeNi metal having a solar Ni : Co ratio, (e) solar (CI) abundances of refractory and moderately volatile lithophiles, and highly depleted abundances of volatile lithophiles, (f) similar oxygen isotopic compositions of whole rocks, chondrules and matrices, which are on or near the CR mixing line, and (g) anomalously high ^N abundances. CR clan chondrites must have formed in the same local region of the nebula, from closely related reservoirs of materials. The coexistence of anhydrous chondrules with hydrous matrix (and dark inclusions) in the LEW 85332,Acfer 182,and ALH 85085-like chondrites, as well as the widely differing degrees of hydration within and between chondritic samples, implies that hydration of the components was not variable in a single locality, but took place at a variety of locales prior to final lithification of the CR clan chondrites
Process of discovery: A fourth-year translational science course
The Liaison Committee on Medical Education notes the importance of educating medical students on clinical and translational research principles.To describe a fourth-year course, “Process of discovery,” which addresses teaching these principles, and to discuss students’ perceptions of the course.Core components and pedagogical methods of this course are presented. Course assessment was performed with specific pre- and post-course assessments.During academic years 2004 to 2009, 562 students were enrolled, with assessment response rate of 94% pre-course and 85% post-course. The students’ self-assessment of their current understanding of clinical and translation research significantly increased, as well as their understanding of how clinical advances will take place over the next decade.A fourth-year course teaching clinical and translational research is successful, is seen as a positive experience and can meet the requirements for including clinical and translational research in the medical school curriculum
Molecular genetic contribution to the developmental course of attention-deficit hyperactivity disorder
Objective: The developmental trajectory of attention-deficit hyperactivity disorder (ADHD) is variable. Utilizing a longitudinally assessed sample, we investigated the contribution of susceptibility gene variants, previously implicated through pooled or meta-analyses, to the developmental course of Attention-Deficit Hyperactivity Disorder over time. Methods: 151 children (aged 6–12) who met diagnostic criteria for ADHD were assessed using research diagnostic interviews during childhood and 5 years later in adolescence. Severity was defined as total number of ADHD symptoms at baseline and reassessment. Association with variants at DRD4, DRD5, and the dopamine transporter gene, DAT was analyzed using linear regression. Results: As expected, affected individuals showed a decline in ADHD severity over time. The DRD4 48 bp VNTR 7-repeat and DRD5 CA(n) microsatellite marker 148 bp risk alleles were associated with persistent ADHD. Those possessing the DRD4 7 repeat risk allele showed less of a decline in severity at reassessment than those without the risk allele. Conclusions: Those carrying the DRD4 7 risk allele showed greater symptom severity at follow-up and less ADHD reduction over time. These findings support the hypothesis that some susceptibility genes for ADHD also influence its developmental course
A Read/Write Mechanism Connects p300 Bromodomain Function to H2A.Z Acetylation
Acetylation of the histone variant H2A.Z (H2A.Zac) occurs at active regulatory regions associated with gene expression. Although the Tip60 complex is proposed to acetylate H2A.Z, functional studies suggest additional enzymes are involved. Here, we show that p300 acetylates H2A.Z at multiple lysines. In contrast, we found that although Tip60 does not efficiently acetylate H2A.Z in vitro, genetic inhibition of Tip60 reduces H2A.Zac in cells. Importantly, we found that interaction between the p300-bromodomain and H4 acetylation (H4ac) enhances p300-driven H2A.Zac. Indeed, H2A.Zac and H4ac show high genomic overlap, especially at active promoters. We also reveal unique chromatin features and transcriptional states at enhancers correlating with co-occurrence or exclusivity of H4ac and H2A.Zac. We propose that differential H4 and H2A.Z acetylation signatures can also define the enhancer state. In conclusion, we show both Tip60 and p300 contribute to H2A.Zac and reveal molecular mechanisms of writer/reader crosstalk between H2A.Z and H4 acetylation through p300
A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites
This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program
- …