3,266 research outputs found

    Effect of heat treatment on stiffness and damping of SiC/Ti-15-3

    Get PDF
    The effect of heat treatment on material properties of SiC/Ti-15-3 was measured by vibration tests. Heat treatment changes the microstructure, which was found to stiffen the matrix and reduce its damping capacity. Test results indicate how these changes in the matrix affect the corresponding properties of the composite. Measurements show that heat treatment affects damping properties of the composite to a greater extent than stiffness properties. The extent of change in mechanical properties is shown to depend on heat treatment temperature and exposure time

    A NASTRAN DMAP alter for linear buckling analysis under dynamic loading

    Get PDF
    A unique modification to the NASTRAN solution sequence for transient analysis with direct time integration (COSMIC NASTRAN rigid format 9) was developed and incorporated into a DMAP alter. This DMAP alter calculates the buckling stability of a dynamically loaded structure, and is used to predict the onset of structural buckling under stress wave loading conditions. The modified solution sequence incorporates the linear buckling analysis capability (rigid format 5) of NASTRAN into the existing Transient solution rigid format in such a way as to provide a time dependent eigensolution which is used to assess the buckling stability of the structure as it responds to the impulsive load. As a demonstration of the validity of this modified solution procedure, the dynamic buckling of a prismatic bar subjected to an impulsive longitudinal compression is analyzed and compared to the known theoretical solution. In addition, a dynamic buckling analysis is performed for the analytically less tractable problem of the localized dynamic buckling of an initially flawed composite laminate under transverse impact loading. The addition of this DMAP alter to the transient solution sequence in NASTRAN facilitates the prediction of both time and mode of buckling

    Evaluation of thermal and mechanical loading effects on the structural behavior of a SiC/titanium composite

    Get PDF
    Composite specimens of titanium-15-3 matrix reinforced with continuous SCS-6 silicon carbide fibers were tested under a variety of thermal and mechanical loadings. A combined experimental/finite element approach was used to estimate the effective in-situ modulus of the matrix material and to evaluate changes in modulus due to the applied loads. Several fiber orientations were tested. Results indicate that the effect of the thermal loads on composite stiffness varies with fiber orientation. Applications of this method to test specimens damaged by uniaxial tension, thermal cycling, and isothermal fatigue loadings are used to illustrate that by monitoring overall structural behavior, changes in stiffness caused by thermomechanical loading can be detected

    Low velocity impact analysis with NASTRAN

    Get PDF
    A nonlinear elastic force-displacement relationship is used to calculate the transient impact force and local deformation at the point of contact between impactor and target. The nonlinear analysis and transfer function capabilities of NASTRAN are used to define a finite element model that behaves globally linearly elastic, and locally nonlinear elastic to model the local contact behavior. Results are presented for two different structures: a uniform cylindrical rod impacted longitudinally; and an orthotropic plate impacted transversely. Calculated impact force and transient structural response of the targets are shown to compare well with results measured in experimental tests

    2-16 mu m spectroscopy of micron-sized enstatite (Mg,Fe)(2)Si2O6 silicates from primitive chondritic meteorites

    Get PDF
    We present mid-infrared spectra from individual enstatite silicate grains separated from primitive type 3 chondritic meteorites. The 2-16 mu m transmission spectra were taken with microspectroscopic Fourier-transform infrared (FT-IR) techniques as part of a project to produce a data base of infrared spectra from minerals of primitive meteorites for comparison with astronomical spectra. In general, the wavelength of enstatite bands increases with the proportion of Fe. However, the wavelengths of the strong En(100) bands at 10.67 and 11.67 decrease with increasing Fe content. The 11.67-mu m band exhibits the largest compositional wavelength shift (twice as large as any other). Our fits of the linear dependence of the pyroxene peaks indicate that crystalline silicate peaks in the 10-mu m spectra of Herbig AeBe stars, HD 179218 and 104237, are matched by pyroxenes of En(90-92) and En(78-80), respectively. If these simplistic comparisons with the astronomical grains are correct, then the enstatite pyroxenes seen in these environments are more Fe-rich than are the forsterite (Fo(100)) grains identified in the far-infrared which are found to be Mg end-member grains. This differs from the general composition of type 3 chondritic meteoritic grains in which the pyroxenes are more Mg-rich than are the olivines from the same meteorite

    Dynamic delamination buckling in composite laminates under impact loading: Computational simulation

    Get PDF
    A unique dynamic delamination buckling and delamination propagation analysis capability has been developed and incorporated into a finite element computer program. This capability consists of the following: (1) a modification of the direct time integration solution sequence which provides a new analysis algorithm that can be used to predict delamination buckling in a laminate subjected to dynamic loading, and (2) a new method of modeling the composite laminate using plate bending elements and multipoint constraints. This computer program is used to predict both impact induced buckling in composite laminates with initial delaminations and the strain energy release rate due to extension of the delamination. It is shown that delaminations near the outer surface of a laminate are susceptible to local buckling and buckling-induced delamination propagation when the laminate is subjected to transverse impact loading. The capability now exists to predict the time at which the onset of dynamic delamination buckling occurs, the dynamic buckling mode shape, and the dynamic delamination strain energy release rate

    Can a Logarithmically Running Coupling Mimic a String Tension?

    Full text link
    It is shown that a Coulomb potential using a running coupling slightly modified from the perturbative form can produce an interquark potential that appears nearly linear over a large distance range. Recent high-statistics SU(2) lattice gauge theory data fit well to this potential without the need for a linear string-tension term. This calls into question the accuracy of string tension measurements which are based on the assumption of a constant coefficient for the Coulomb term. It also opens up the possibility of obtaining an effectively confining potential from gluon exchange alone.Comment: 13 pages, LaTeX, two figures not included, available from author. revision - Line lengths fixed so it will tex properl

    A NASTRAN DMAP alter for linear buckling analysis under dynamic loading

    Get PDF
    A modification to the NASTRAN solution sequence for transient analysis with direct time integration (COSMIC NASTRAN rigid format 9) was developed and incorporated into a DMAP alter. This DMAP alter calculates the buckling stability of a dynamically loaded structure, and is used to predict the onset of structural buckling under stress-wave loading conditions. The modified solution sequence incorporates the linear buckling analysis capability (rigid format 5) of NASTRAN into the existing Transient solution rigid format in such a way as to provide a time dependent eigensolution which is used to assess the buckling stability of the structure as it responds to the impulsive load. As a demonstration of the validity of this modified solution procedure, the dynamic buckling of a prismatic bar subjected to an impulsive longitudinal compression is analyzed and compared to the known theoretical solution. In addition, a dynamic buckling analysis is performed for the analytically less tractable problem of the localized dynamic buckling of an initially flawed composite laminate under transverse impact loading. The addition of this DMAP alter to the transient solution sequence in NASTRAN facilitates the computational prediction of both the time at which the onset of dynamic buckling occurs in an impulsively loaded structure, and the dynamic buckling mode shapes of that structure
    corecore