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SUMMARY

A unique modification to the NASTRAN solution sequence for transient
analysis with direct time integration (COSMIC NASTRAN rigid format 9) has been
developed and incorporated into a DMAP alter. This DMAP alter calculates the
buckling stability of a dynamically loaded structure, and is used to predict
the onset of structural buckling under stress-wave loading conditions. The
modified solution sequence incorporates the linear buckling analysis capability
(rigid format 5) of NASTRAN into the existing Transient solution rigid format
in such a way as to provide a time dependent eigensolution which is used to
assess the buckling stability of the structure as it responds to the impulsive
load. As a demonstration of the validity of this modified solution procedure,
the dynamic buckling of a prismatic bar subjected to an impulsive longitudinal
compression is analyzed and compared to the known theoretical solution. 1In
addition, a dynamic buckling analysis is performed for the analytically less
tractable problem of the localized dynamic buckling of an initially flawed com-
posite laminate under transverse impact loading. The addition of this DMAP
alter to the transient solution sequence in NASTRAN facilitates the computa-
tional prediction of both the time at which the onset of dynamic buckling
occurs in an impulsively loaded structure, and the dynamic buckling mode
shapes of that structure.

INTRODUCTION

Composite laminates that are subjected to static, dynamic, or fatigue
loading are known to undergo delamination, or debonding, between the laminated
plies of which they are composed. Delamination causes a significant loss
stiffness and strength, and can considerably reduce the structural integrity
of a laminate. Once this damage has occurred, a compressive stress near the

| delamination can induce local buckling of the delaminated plies. This buck-

[ ling may then cause further extension of the delamination and progressive wea-
kening of the laminate. In lieu of actual experimental testing, the ability

‘ to computationally predict the onset of delamination buckling is necessary for

\ evaluating the durability of many composite structures.

|

The delamination buckling phenomenon has been observed experimentally
under both static and fatigue loading conditions (Refs. 1 to 4), and several
analytical and numerical methods have been proposed (Refs. 5 and 6) to model
this damage mechanism. Finite-element approaches (Refs. 7 to 9) have been
used as the basis for these analyses, but no comparable numerical methods exist
to analyze delimination buckling which occurs as a result of an impulsively
applied load. That is the topic of this paper.
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Experimental-obse¥vations of dynamic delamination buckling in transversely
impacted laminates were reported earlier (Refs. 10 to 12), using high-speed
photography and simultaneous strain measurements of transversely impacted lami-
nates. A related numerical analysis (Ref. 10) indicated that the buckling
behavior must be accounted for in the computational model in order to accu-
rately assess the damage tolerance capability of the laminate. This motivated
the present development of a NASTRAN DMAP alter analysis procedure that can
be used to computationally predict the onset of buckling instability under
transient stress-wave loading.

The objectives of this paper are, therefore, (1) to outline the dynamic
buckling analysis computational procedure and its implementation into the DMAP
alter sequence (2) demonstrate the validity of the dynamic buckling analysis
procedure by analyzing a simple one-dimensional example problem with a known
solution, and (3) apply the dynamic buckling analysis to the analytically less
tractable problem of the localized dynamic buckling of an initially flawed
composite laminate under transverse impact loading.

The NASTRAN transient solution sequence, when modified as indicated in
the following section, provides a new computational tool that can be used to
predict both the time at which the onset of dynamic buckling occurs and the
dynamic buckling mode shapes of an impulsively loaded structure.

Dynamic Buckling Analysis

Linear buckling analysis requires solution of the eigenvalues problem:

(1K1 + ATK 1 (0} = ] M
where
(K] structural stiffness matrix;
[(Kg]l stress stiffness matrix
X, {¢} denote the associated eigenvalue and eigenvector

In terms of the buckling analysis, the eigenvector {4} represents the
buckling mode shape, and the associated eigenvalue A indicates the multiple
of [Kg] needed to make equation (1) singular, that is, to cause buckling. In
a one-dimensional column buckling problem, each scalar eigenvalue satisfying
equation (1) physically represents the nondimensional ratio:

oA

A=, (2)

where o s the compressive stress in the column, A is the cross-sectional
area, and P, 1is the buckling load. If the eigenvalue has the critical value

of unity (oA = P,), buckling in the associated mode occurs.

In the dynamic case, the terms of [Ks]l in Eg. (1) vary with time as the
stress waves propagate through the structure. The eigensolution of (1) then
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becomes time dependent, and can be used to track the buckling stability as a
function of time. Figure 1 is a simplified representation of a modified
direct-time integration solution sequence in which the updated stress stiffness
matrix is formed after each time step At, and the associated eigenvalue prob-
lem in equation (1) is solved. The eigenvalue is now a function of time, and
it indicates the onset of buckling when it reaches the critical value of unity.
Figure 2 is the DMAP alter which incorporates this dynamic buckling algorithm
into the existing transient solution sequence.

DMAP Procedure

The functions of the DMAP statements shown in Fig. 2 are summarized
here. In line 2 the number of columns in the UPV matrix is determined. This
matrix contains the displacement, velocity and acceleration vectors for each
degree of freedom at each time step. Lines 2 through 16 follow the Bubble
Algorithm approach of Ref. 13. The DMI column matrices TIP1 and BAS1 from the
Bulk Data deck, each initially sized to contain more rows than columns in the
UPV matrix, are used to form two new column matrixes, MNTRJ and BOOTI. The
number of rows in each of these matrices is equal to the number of columns in
the UPV matrix. The monitor matrix MNTRJ initially contains unity in the
first row and zero in the remaining rows. The BOOTI matrix always contains
unity in the last row and zero in the remaining rows.

Having determined the size of the partitioning matrices, the eigenvalue
extraction data is determined in Tine 19 and the buckling calculations are now
performed. At the beginning of each pass through the RAALOOP, corresponding
to each integration time step of the requested output, the current column
position is compared with the number of columns in the UPV matrix, lines 25
through 27, ending the loop at the end of the available data. Continuing
within the loop the unity value of the MNTRJ matrix is advanced three rows,
lines 28 through 31, pointing to the location of the current displacement
vector in the UPV matrix. The MNTRJ matrix is used to partition the UPV
matrix, line 32, stripping the column containing the displacements. These
displacements are used in the DSMG! module, line 33, to form the time-varying
global differential stiffness matrix, KDGG. The reduced differential stiff-
ness matrix, KDAA, is then formed by eliminating the restrained and dependent
degrees of freedom, line 35 through 45, and in line 47 this matrix is multi-
plied by negative one, forming the KDAAM matrix. The stiffness matrices KAA
and KDAAM are then used in the READ module, line 48, to solve for the eigen-
values and eigenvectors for each integration time step initially requested for
output.

The eigenvalue for each time step is printed by line 52. Optionally,
ines 53 and 54 may be used to print eigenvalues and eigenvalue extraction
data. Line 58 may be used to print eigenvectors. The RAALOOP is ended at
line 64.

The computationally intensive nature of this analysis can be made more
efficient by slightly modifying the DAMP procedure. A promising method is to
perform the buckling analysis at specified time intervals in the transient
solution sequence rather than after every time step, as is done here. The
length of the time interval can be progressively decreased as the eigenvaiue
begins to change more rapidly, or as the critical value of unity is approached.
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This technique will significantly reduce the number of individual buckling
analyses performed, and hence will result in a more computationally efficient
algorithm.

Example Problem

In order to establish the validity of this analysis procedure, a simple
problem with a known solution, as given in Ref. 14, was analyzed. The propaga-
tion of a longitudinal compressive pulse in a long prismatic bar, shown in
Fig. 3, was modelled.

Assuming a one-inch diameter aluminum bar of uniform circular cross sec-
tion the elastic and geometric constants are:

6

E =10 x 107 psi (3)
I = lrj = T_ 1n4 (4)
4 64
L2
A=wr" = in.
T (5
2
o = 2.5x107% 1228 (6)
in.
L =100 in. (6)

where E  is the Young's Modulus, I is the area moment of inertia, A is the
cross-sectional area, p is the mass density, and L is the length of the bar.

The lowest buckling load is given by (Ref. 15):
2
Pe = mEIl =121 1b (N
4.2

As shown in Fig. 3, the applied load is identical to the static buckling load
in Eq. (D).

Using the above material constants, the bar wave velocity is given by
(Ref. 14):

£ in.
Co =vp = 200,000 Sec (8)

so the time for the longitudinal compression wave to travel from the impact
point to the distal end of the bar is

t = = = 500 ps
0 0

O|—

(9)

190



A NASTRAN model consisting of ten rod elements, for a total of ten uncon-
strained axial degrees of freedom, was used to model the longitudinal impact
of the bar. The integration time step was taken as

1 L

to insure a numerically converged solution. The propagation of the compres-
sion wave from the point of impact to the clamped end of the bar is depicted
in Figs. 4¢a) and (b).

The compressive pulse, traveling at a speed Cg, reaches the complete
length of the bar at time tg (500 us). Because the distal end of the bar is
held fixed, the incident compressive pulse reflects (Ref. 15) as a pulse of
the same sign (compressive) which superimposes on the existing uniform compres-
sive stress in the bar. Figures 4(c) and (d) depict the progression of the
reflected pulse, traveling at a speed Co, back to the proximal end of bar,
effectively doubling the compressive load supported by the bar. Reflecting
from the proximal (free) end as a pulse of opposite sign (tensile) which super-
imposes on the existing compressive stress, the bar returns to its original
fully stressed state at time 3ty, (1500 ps) as shown in Figs. 4(e) and (f).
Finally, in Figs. 4(g) and (h), the tensile pulse reflects as a tensile pulse
from the fixed end which temporarily cancels the uniform compression at time
4ty (2000 ps), leaving the bar instantaneously unstressed. The stress states
depicted in Figs. 4(i) and (J), for all practical purposes identical to those
in Figs. 4(a) and (b), indicate that, assuming no damping exists, the above
cycle will repeat itself indefinitely.

The corresponding time dependence of the lowest eigenvalue is shown in
Fig. 5. The critical value of 1.0 is reached at times to, 3tgy, 5tg, 7tg,. . .
(500, 1500, 2500, 3500 ws,. . .); and whenever the bar supports a uniform com-
pressive stress corresponding to its buckling load. Similarly, the eigenvalue
reaches to its lower limit of 0.5 at times 2ty, 6ty, 10tgy,. . . (1000, 3000,
5000 us,. . .); and whenever the stress state is double that of the buckling
load. The eigenvalue becomes large (theoretically infinite) at time 0, 4tg,,
8ty,. . . (0, 2000, 4000, 6000 ps,. . .) ; and whenever the bar is unstressed.

Superimposed on the finite element results in Fig. 4 is the theoretical
1-D solution, assuming the stress wave propagates nondisperively at a constant
speed Co and reflects from the boundaries as described above. Good agree-
ment exists between the two solutions, even when relatively few finite ele-
ments are used to model the bar. The time behavior of the lowest eigenvalue,
shown in Fig. 5, can be interpreted directly in terms of the transient stress
distribution in Fig. 4. Since the applied compressive load is exactly equal
to the first static buckling load in Eq. (7), and no strain-rate dependence
was assumed in the finite element model, buckling is predicted whenever the
bar is uniformly stressed with its critical static buckling stress, which
occurs at odd multiples of ty, as shown in Fig. 4.

In a practical application, the above analysis is valid only until the
onset of buckling occurs, since no post-buckling behavior has yet been included
in the finite element model. The time itegration was extended in the example
problem only to physically interpret the results of the dynamic buckling
analysis.
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Dynamic Delamination Buckling

The example problem could have been solved without the use of a finite
element analysis because of the simple non-dispersive nature of the longitudi-
nal wave propagation. However, the propagation of flexural waves in beam-like
structures is dispersive by nature, and as such would pose a formidable chal-
lenge without the use of some type of computational simulation. In Ref. 11,
experimental measurements of delamination duckling in graphite/epoxy composite
laminates were reported. The beam-like experimental specimens had simulated
delaminations (ply disbonds) embedded in them during the fabrication process.
They were held clamped at both ends and impacted transversely, as depicted
schematically in Fig. 6. The subsequent flexure-induced local buckling of the
delamination was recorded using strain gages and high speed photography. A
finite element model of the initially flawed experimental specimen is used
here to verify that the dynamic delamination buckling phenomenon can be pre-
dicted using computational simulation. Figure 6 shows the geometry and loading
conditions for the initially flawed composite laminate subjected to a trans-
verse impact. The finite element discretization of this laminate near the
embedded flaw is shown schematically in Fig. 7. The layered structure of the
composite laminate is represented by layers of shell elements. Multipoint con-
straints are imposed on the degrees of freedom between neighboring nodal points
in the thickness direction such that simple beam bending displacements are
enforced; that is, plane sections remain plane and no strain exists in the
thickness direction. These constraints are removed in the delaminated region
to allow the delaminated plies to separate from the main laminate when a local
compression occurs in that area, as shown in Fig. 7. More complete details of
the finite element modeling procedure are given in Ref. 12.

The progression of the flexural waves out from the central impact point
to the boundaries of the laminate are shown in Fig. 8. As the disturbance
passes through the flawed region at 100 to 150 us after impact, the delaminated
ligament separates from the laminate and begins to support a compressive longi-
tudinal stress which increases in magnitude until it causes a local buckling
of the delamination. The eigenvalue behavior and corresponding buckling mode
are shown in Fig. 9. As the laminate deforms under the applied load, the
eigenvalue decreases monotonically in magnitude until it reaches the critical
value of unity, indicating the onset of buckling at approximately 190 us from
impact. The corresponding buckling mode shape is also depicted in the figure.

These results correspond closely with experimental observations. Both
the buckling mode shape and the time at which buckling occurs are in good
agreement with measurements taken from high speed photographs. A detailed com-
parison of finite element results and experimental measurements is given in
Ref. 11.

CONCLUSIONS

A dynamic delamination buckling analysis procedure has been incorporated,
in the form of a DMAP alter, into the transient analysis rigid format of
NASTRAN. MWith this enhancement, NASTRAN can be used to calculate the time at
which dynamic buckling occurs and the buckling mode shape of a structure sub-
jected to dynamic loading. Comparison of the calculated results with a known
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solution supports the validity of the analysis. Application of the dynamic
buckling analysis to the more complex problem of transverse impact of beam-
like laminate was demonstrated, and the results phenomenologically duplicated
those reported in earlier experiments.

10.
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