269 research outputs found

    Back reaction of a long range force on a Friedmann-Robertson-Walker background

    Get PDF
    It is possible that there may exist long-range forces in addition to gravity. In this paper we construct a simple model for such a force based on exchange of a massless scalar field and analyze its effect on the evolution of a homogeneous Friedmann-Robertson-Walker cosmology. The presence of such an interaction leads to an equation of state characterized by positive pressure and to resonant particle production similar to that observed in preheating scenarios.Comment: 14 pages, 6 color Postscript figures, LaTe

    Motion of Quantized Vortices as Elementary Objects

    Full text link
    The general local, nondissipative equations of motion for a quantized vortex moving in an uncharged laboratory superfluid are derived from a relativistic, co-ordinate invariant framework, having vortices as its elementary objects in the form of stable topological excitations. This derivation is carried out for a pure superfluid with isotropic gap at the absolute zero of temperature, on the level of a hydrodynamic, collective co-ordinate description. In the formalism, we use as fundamental ingredients that particle number as well as vorticity are conserved, and that the fluid is perfect. No assumptions are involved as regards the dynamical behaviour of the order parameter. The interaction of the vortex with the background fluid, representing the Magnus force, and with itself via phonons, giving rise to the hydrodynamic vortex mass, are separated. For a description of the motion of the vortex in a dense laboratory superfluid like helium II, two limits have to be considered: The nonrelativistic limit for the superfluid background is taken, and the motion of the vortex is restricted to velocities much less than the speed of sound. The canonical structure of vortex motion in terms of the collective co-ordinate is used for the quantization of this motion.Comment: 25 pages, 4 figures, published versio

    Fault-Tolerant Hotelling Games

    Full text link
    The nn-player Hotelling game calls for each player to choose a point on the line segment, so as to maximize the size of his Voronoi cell. This paper studies fault-tolerant versions of the Hotelling game. Two fault models are studied: line faults and player faults. The first model assumes that the environment is prone to failure: with some probability, a disconnection occurs at a random point on the line, splitting it into two separate segments and modifying each player's Voronoi cell accordingly. A complete characterization of the Nash equilibria of this variant is provided for every nn. Additionally, a one to one correspondence is shown between equilibria of this variant and of the Hotelling game with no faults. The second fault model assumes the players are prone to failure: each player is removed from the game with i.i.d. probability, changing the payoffs of the remaining players accordingly. It is shown that for n3n \geq 3 this variant of the game has no Nash equilibria

    Observational evidence for self-interacting cold dark matter

    Get PDF
    Cosmological models with cold dark matter composed of weakly interacting particles predict overly dense cores in the centers of galaxies and clusters and an overly large number of halos within the Local Group compared to actual observations. We propose that the conflict can be resolved if the cold dark matter particles are self-interacting with a large scattering cross-section but negligible annihilation or dissipation. In this scenario, astronomical observations may enable us to study dark matter properties that are inaccessible in the laboratoryComment: 4 pages, no figures; added references, pedagogical improvements, to appear in PR

    Linear and non-linear perturbations in dark energy models

    Full text link
    I review the linear and second-order perturbation theory in dark energy models with explicit interaction to matter in view of applications to N-body simulations and non-linear phenomena. Several new or generalized results are obtained: the general equations for the linear perturbation growth; an analytical expression for the bias induced by a species-dependent interaction; the Yukawa correction to the gravitational potential due to dark energy interaction; the second-order perturbation equations in coupled dark energy and their Newtonian limit. I also show that a density-dependent effective dark energy mass arises if the dark energy coupling is varying.Comment: 12 pages, submitted to Phys. Rev; v2: added a ref. and corrected a typ

    Mouse Pancreatic Endocrine Cell Transcriptome Defined in the Embryonic Ngn3-Null Mouse

    Get PDF
    OBJECTIVE—To document the transcriptome of the pancreatic islet during the early and late development of the mouse pancreas and highlight the qualitative and quantitative features of gene expression that contribute to the specification, growth, and differentiation of the major endocrine cell types. A further objective was to identify endocrine cell biomarkers, targets of diabetic autoimmunity, and regulatory pathways underlying islet responses to physiological and pathological stimuli

    β-Cell Proliferation, but Not Neogenesis, Following 60% Partial Pancreatectomy Is Impaired in the Absence of FoxM1

    Get PDF
    OBJECTIVE—This study was designed to determine whether the transcription factor FoxM1 was required for regeneration of β-cell mass via proliferation and/or neogenesis in the adult after 60% partial pancreatectomy (PPx)

    PARP1 suppresses homologous recombination events in mice in vivo

    Get PDF
    Recent studies suggest that PARP1 inhibitors, several of which are currently in clinical trial, may selectively kill BRCA1/2 mutant cancers cells. It is thought that the success of this therapy is based on immitigable lethal DNA damage in the cancer cells resultant from the concurrent loss or inhibition of two DNA damage repair pathways: single-strand break (SSB) repair and homologous recombination repair (HRR). Presumably, inhibition of PARP1 activity obstructs the repair of SSBs and during DNA replication, these lesions cause replication fork collapse and are transformed into substrates for HRR. In fact, several previous studies have indicated a hyper-recombinogenic phenotype in the absence of active PARP1 in vitro or in response to DNA damaging agents. In this study, we demonstrate an increased frequency of spontaneous HRR in vivo in the absence of PARP1 using the pun assay. Furthermore, we found that the HRR events that occur in Parp1 nullizygous mice are associated with a significant increase in large, clonal events, as opposed to the usually more frequent single cell events, suggesting an effect in replicating cells. In conclusion, our data demonstrates that PARP1 inhibits spontaneous HRR events, and supports the model of DNA replication transformation of SSBs into HRR substrates
    corecore