5 research outputs found

    Potent, p53-independent induction of NOXA sensitizes MLL-rearranged B-cell acute lymphoblastic leukemia cells to venetoclax

    Get PDF
    The prognosis for B-cell precursor acute lymphoblastic leukemia patients with Mixed-Lineage Leukemia (MLL) gene rearrangements (MLLr BCP-ALL) is still extremely poor. Inhibition of anti-apoptotic protein BCL-2 with venetoclax emerged as a promising strategy for this subtype of BCP-ALL, however, lack of sufficient responses in preclinical models and the possibility of developing resistance exclude using venetoclax as monotherapy. Herein, we aimed to uncover potential mechanisms responsible for limited venetoclax activity in MLLr BCP-ALL and to identify drugs that could be used in combination therapy. Using RNA-seq, we observed that long-term exposure to venetoclax in vivo in a patient-derived xenograft model leads to downregulation of several tumor protein 53 (TP53)-related genes. Interestingly, auranofin, a thioredoxin reductase inhibitor, sensitized MLLr BCP-ALL to venetoclax in various in vitro and in vivo models, independently of the p53 pathway functionality. Synergistic activity of these drugs resulted from auranofin-mediated upregulation of NOXA pro-apoptotic protein and potent induction of apoptotic cell death. More specifically, we observed that auranofin orchestrates upregulation of the NOXA-encoding gene Phorbol-12-Myristate-13-Acetate-Induced Protein 1 (PMAIP1) associated with chromatin remodeling and increased transcriptional accessibility. Altogether, these results present an efficacious drug combination that could be considered for the treatment of MLLr BCP-ALL patients, including those with TP53 mutations

    Intrinsic functional potential of NK-Cell subsets constrains retargeting driven by chimeric antigen receptors

    No full text
    Natural killer (NK) cells hold potential as a source of allogeneic cytotoxic effector cells for chimeric antigen receptor (CAR)-mediated therapies. Here, we explored the feasibility of transfecting CAR-encoding mRNA into primary NK cells and investigated how the intrinsic potential of discrete NK-cell subsets affects retargeting efficiency. After screening five second- and third-generation anti-CD19 CAR constructs with different signaling domains and spacer regions, a third-generation CAR with the CH2-domain removed was selected based on its expression and functional profiles. Kinetics experiments revealed that CAR expression was optimal after 3 days of IL15 stimulation prior to transfection, consistently achieving over 80% expression. CAR-engineered NK cells acquired increased degranulation toward CD19+ targets, and maintained their intrinsic degranulation response toward CD19− K562 cells. The response of redirected NK-cell subsets against CD19+ targets was dependent on their intrinsic thresholds for activation determined through both differentiation and education by killer cell immunoglobulin-like receptors (KIR) and/or CD94/NKG2A binding to self HLA class I and HLA-E, respectively. Redirected primary NK cells were insensitive to inhibition through NKG2A/HLA-E interactions but remained sensitive to inhibition through KIR depending on the amount of HLA class I expressed on target cells. Adaptive NK cells, expressing NKG2C, CD57, and self-HLA–specific KIR(s), displayed superior ability to kill CD19+, HLA low, or mismatched tumor cells. These findings support the feasibility of primary allogeneic NK cells for CAR engineering and highlight a need to consider NK-cell diversity when optimizing efficacy of cancer immunotherapies based on CAR-expressing NK cells

    Targeting peroxiredoxin 1 impairs growth of breast cancer cells and potently sensitises these cells to prooxidant agents

    No full text
    BackgroundOur previous work has shown peroxiredoxin-1 (PRDX1), one of major antioxidant enzymes, to be a biomarker in human breast cancer. Hereby, we further investigate the role of PRDX1, compared to its close homolog PRDX2, in mammary malignant cells.MethodsCRISPR/Cas9- or RNAi-based methods were used for genetic targeting PRDX1/2. Cell growth was assessed by crystal violet, EdU incorporation or colony formation assays. In vivo growth was assessed by a xenotransplantation model. Adenanthin was used to inhibit the thioredoxin-dependent antioxidant defense system. The prooxidant agents used were hydrogen peroxide, glucose oxidase and sodium L-ascorbate. A PY1 probe or HyPer-3 biosensor were used to detect hydrogen peroxide content in samples.ResultsPRDX1 downregulation significantly impaired the growth rate of MCF-7 and ZR-75-1 breast cancer cells. Likewise, xenotransplanted PRDX1-deficient MCF-7 cells presented a retarded tumour growth. Furthermore, genetic targeting of PRDX1 or adenanthin, but not PRDX2, potently sensitised all six cancer cell lines studied, but not the non-cancerous cells, to glucose oxidase and ascorbate.ConclusionsOur study pinpoints the dominant role for PRDX1 in management of exogeneous oxidative stress by breast cancer cells and substantiates further exploration of PRDX1 as a target in this disease, especially when combined with prooxidant agents
    corecore