8 research outputs found

    Nuclear receptor binding protein 1 regulates intestinal progenitor cell homeostasis and tumour formation.

    Get PDF
    Genetic screens in simple model organisms have identified many of the key components of the conserved signal transduction pathways that are oncogenic when misregulated. Here, we identify H37N21.1 as a gene that regulates vulval induction in let-60(n1046gf), a strain with a gain-of-function mutation in the Caenorhabditis elegans Ras orthologue, and show that somatic deletion of Nrbp1, the mouse orthologue of this gene, results in an intestinal progenitor cell phenotype that leads to profound changes in the proliferation and differentiation of all intestinal cell lineages. We show that Nrbp1 interacts with key components of the ubiquitination machinery and that loss of Nrbp1 in the intestine results in the accumulation of Sall4, a key mediator of stem cell fate, and of Tsc22d2. We also reveal that somatic loss of Nrbp1 results in tumourigenesis, with haematological and intestinal tumours predominating, and that nuclear receptor binding protein 1 (NRBP1) is downregulated in a range of human tumours, where low expression correlates with a poor prognosis. Thus NRBP1 is a conserved regulator of cell fate, that plays an important role in tumour suppression

    UK–Russia Researcher Links Workshop: extracellular vesicles – mechanisms of biogenesis and roles in disease pathogenesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 1–5 March 2015

    Get PDF
    The UK–Russia extracellular vesicles (EVs) workshop was held at the Medical Center of the M.V. Lomonosov Moscow State University, Moscow, Russia, with 56 attendees from UK and Russian universities and research institutes. The program consisted of 6 research sessions and was focused on studies of EVs isolated from in vitro model systems or biological fluids, including blood and urine. The multidisciplinary program included presentations on mechanisms of EV biogenesis, the role of EVs in disease pathogenesis, the diagnostic value of EVs, including their quantitation and cargo load, as well as the clinical use of EVs in regenerative medicine. Methodological challenges imposed by the nanoscale size of EVs as well as targeted delivery approaches for therapeutics were considered in a separate session on technologies. The main aim of the workshop was to overview challenges confronting EV researchers and to facilitate knowledge exchange between researchers with different backgrounds and skills. Given the lack of definitive EV nomenclature, specific terms (exosomes or microvesicles) were only applied in the meeting report to studies that carried out full EV characterization, including differential ultracentrifugation isolation approaches, comprehensive protein marker characterization, and single vesicle analysis (electron microscopy and nanoparticle analysis), to ascertain EV size and morphology following the International Society for Extracellular Vesicles standardization recommendations (1,2). In studies where characterization was not conclusive, the term EV is used

    Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells.

    No full text
    Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies
    corecore