64 research outputs found
A package of momentum and heat transfer coefficientsfor the stable atmospheric surface layer
The polar atmospheric surface layer is often stably stratified, which strongly influences turbulent transport processes between the atmosphere and sea ice/ocean. Transport is usually parametrized applying Monin Obukhov Similarity Theory (MOST) which delivers transfer coefficients as a function of stability parameters (see below). In a series of papers (Gryanik and LΓΌpkes, 2018; Gryanik et al., 2020,2021; Gryanik and LΓΌpkes, 2022) it has been shown that differences between existing parametrizations are large, especially for strong stability. One reason is that they are based on different data sets, for which the origin of differences is still unclear. In this situation Gryanik et al. (2021) as well as Gryanik and LΓΌpkes (2022) proposed a numerically efficient method, which can be used for most of the existing data sets and their specific stability dependences. A package of parametrization resulted that is suitable for its application in weather prediction and climate models. Especially, calculation of fluxes over sea ice were improved. Combined with latest parametrizations of surface roughness it has a large impact on large scale fields as shown recently by Schneider et al. (2021) who applied some members of the package
Anchoring of Aminophosphonates on Titanium Oxide for Biomolecular Coupling
Aminophosphonates were chosen for a first step functionalization of TiO2 grown on titanium, as they possess a phosphonate group on one end, that can be exploited for coupling with the oxide surface, and an amino group on the other end to enable further functionalization of the surface. The deposition of aminophosphonates with different chain lengths (6 and 12 methylenes) was investigated. Oxygen plasma treatment proved useful in increasing the number of 12OH groups at the TiO2 surface, thus helping to anchor the aminophosphonates. By combining different surface-sensitive experimental techniques, we found the existence of a discontinuous monolayer where the molecules are covalently coupled to the TiO2 surface. For the molecules with longer chains, we find evidence of their covalent coupling to the surface through Ti\u2013O\u2013P bond formation, of the exposure of the amino groups at the outer surface, and of an increase in the order of the layer upon thermal annealing
Numerical simulation of ignition of premixed air/fuel mixtures by microwave streamer discharge
A subcritical microwave streamer discharge is used to initiate ignition of premixed air/fuel mixture. The streamer is arising on the internal surface of the dielectric tube using a passive vibrator in a single-pulse regime at atmospheric pressure and temperature. The propagation speed of the combustion front in the quartz cylindrical tube filled by the air/propane mixture is analyzed numerically. The performed studies showed that the streamer discharge, which creates a multitude of ignition points, provides practically instantaneous ignition of the mixture in the entire volume of the tube, where the streamers reach. The results of numerical simulation are compared with the experimental data. Increasing the length of streamer discharge leads to increasing the flame propagation speed
Ignition of premixed air/fuel mixtures by microwave steamer discharge
A variety of methods exists for fast and efficient combustion of air-fuel mixtures. In this study, a microwave subcritical streamer discharge is used to ignite propane-air mixtures at atmospheric pressure. The streamer is initiated at the inner surface of a dielectric tube with the help of a passive half-wave vibrator. By creating a network of ignition lines, the streamer discharge forms the network of burning channels with large total surface area. This leads to the apparent speed of combustion propagation along the cylinder in excess of 100 m/s, which is more than 200 times the laminar flame propagation speed. The axial propagation of the combustion front in a cylindrical tube filled with the air/propane mixture is investigated by high speed video recording in visible light. A simple model is presented to explain observed results
Results of instrumental aerial survey of ice-associated seals on the ice in the Okhotsk Sea in May 2013
Populations of ice-associated seals in the Okhotsk Sea are assessed using modern instrumental aerial technique. The aerial survey was conducted over a part of the ice-covered area of the Sea on May 1-9, 2013 by means of thermal scan and visual digital photography from the aircraft-laboratory An-38 Β«VostokΒ». The ice covered area of the Okhotsk Sea in the time of survey was estimated as 242,000 km2, and 2,993 km2 of it was covered by survey transects with total length 5,617 km. The number of animals on all transects within the equipment swath was counted. Four seal species were identified: bearded, spotted, ribbon, and ringed seals, and their number and distribution were determined. The infra-red scanner recorded 5,730 seals on the ice and 4,360 these animals were photographed including 844 ringed seals, 453 bearded, 721 spotted, 1,805 ribbon, 435 pups non-identified to the species, and 102 non-identified to species adult seals. These assessments were extrapolated over the whole ice-covered area of the Okhotsk Sea using a linear model framework, and the following estimations of the species total abundance were presented (95 % confidence intervals in brackets): 88,253 (64,120-130,320) ringed seals, 39,743 (27,868-60,026) bearded seals, 181,179 (118,392-316,995) ribbon seals, and 84,356 (55,172-113,540) spotted seals. A database on all recorded seals with their Β«portrait-photosΒ» and accompanying information is created on materials of the aerial survey. The developed instrumental technology can be used as a basis for wider aerial surveys of ice-associated seals in the North Pacific
Methodology for Development of a 600-Year Tree-Ring Multi-Element Record for Larch from the Taymir Peninsula, Russia
We developed a long (600-year) dataset for the concentrations of 26 elements in tree rings of larch from the Taymir Peninsula, the northernmost region in the world (ca. 72Β°N) where trees grow. Tree rings corresponding to the time period from 1300 to 1900 A.D. were studied. Eleven wood strips, each from a different larch tree, were cut into ca. 100 mg samples usually consisting of ten consecutive tree rings (but occasionally five). Between 19 and 40 consecutive samples resulted from each tree, yielding a total of 277 samples. The replication of each time interval ranged from three (for periods 1300-1400 A.D. and 1600-1700 A.D.) to six (for 1450-1600 A.D.). Wood samples were digested with concentrated HNO 3 for measurement of Li, B, Na, Mg, Al, Si, P, Cl, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, I, Ba, La, Ce, Nd, W, Au, Pb, Bi, Th, and U using solution Inductively Coupled Plasma Mass Spectrometry (ICPMS). Fourteen elements (V, Co, As, Y, Nb, Mo, Sb, La, Ce, Nd, W, Au, Th, and U) with extremely low concentrations were eliminated from consideration as unreliable. Here we report our sample preparation and measurement procedure, as well as the observed concentrations in tree rings, emphasizing considerations for developing representative and reliable denrodochemical datasets.ΠΠ°ΠΌΠΈ Π±ΡΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ°ΡΡΠΈΠ² Π΄Π°Π½Π½ΡΡ
(600 Π»Π΅Ρ) ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ 26 ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² Π³ΠΎΠ΄ΠΈΡΠ½ΡΡ
ΠΊΠΎΠ»ΡΡΠ°Ρ
Π»ΠΈΡΡΠ²Π΅Π½Π½ΠΈΡΡ Ρ ΠΏΠΎΠ»ΡΠΎΡΡΡΠΎΠ²Π° Π’Π°ΠΉΠΌΡΡ, ΡΠ°ΠΌΠΎΠ³ΠΎ ΡΠ΅Π²Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΈΠΎΠ½Π° Π² ΠΌΠΈΡΠ΅ (ΠΎΠΊΠΎΠ»ΠΎ 72Β° Ρ.Ρ.), Π³Π΄Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ΅Π½ ΡΠΎΡΡ Π΄Π΅ΡΠ΅Π²ΡΠ΅Π². ΠΠ·ΡΡΠ°Π»ΠΈΡΡ Π³ΠΎΠ΄ΠΈΡΠ½ΡΠ΅ ΠΊΠΎΠ»ΡΡΠ°, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ 1300 ΠΏΠΎ 1900 Π³ΠΎΠ΄ Π½.Ρ. ΠΠ΄ΠΈΠ½Π½Π°Π΄ΡΠ°ΡΡ Π΄ΡΠ΅Π²Π΅ΡΠ½ΡΡ
Π²ΡΠΏΠΈΠ»ΠΎΠ², ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π»ΠΈΡΡΠ²Π΅Π½Π½ΠΈΡΡ, Π½Π°ΡΠ΅Π·Π°Π»ΠΈΡΡ Π½Π° ΠΎΠ±ΡΠ°Π·ΡΡ ΠΌΠ°ΡΡΠΎΠΉ ΠΎΠΊΠΎΠ»ΠΎ 100 ΠΌΠ³, ΠΊΠΎΡΠΎΡΡΠ΅, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, ΡΠΎΡΡΠΎΡΠ»ΠΈ ΠΈΠ· Π΄Π΅ΡΡΡΠΈ Π³ΠΎΠ΄ΠΈΡΠ½ΡΡ
ΠΊΠΎΠ»Π΅Ρ (Π½ΠΎ Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΡΠ»ΡΡΠ°ΡΡ
ΠΈΠ· ΠΏΡΡΠΈ). ΠΠ· ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π΄Π΅ΡΠ΅Π²Π° Π±ΡΠ»ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ ΠΎΡ 19 Π΄ΠΎ 40 ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ², ΡΡΠΎ Π΄Π°Π»ΠΎ Π² ΠΎΠ±ΡΠ΅ΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ 277 ΠΎΠ±ΡΠ°Π·ΡΠΎΠ². ΠΠΎΠ²ΡΠΎΡΠ½ΠΎΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²Π°ΡΡΠΈΡΠΎΠ²Π°Π»Π° ΠΎΡ ΡΡΠ΅Ρ
(Π΄Π»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² 1300-1400 Π³.Π½.Ρ. ΠΈ 1600-1700 Π³.Π½.Ρ.) Π΄ΠΎ ΡΠ΅ΡΡΠΈ (Π΄Π»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° 1450-1600 Π³.Π½.Ρ.). ΠΡΠ΅Π²Π΅ΡΠ½ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΡΡ ΡΠ°ΡΡΠ²ΠΎΡΡΠ»ΠΈ Π² ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ HNO 3 Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Li, B, Na, Mg, Al, Si, P, Cl, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, I, Ba, La, Ce, Nd, W, Au, Pb, Bi, Th ΠΈ U ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΠΉ (ICP-MS) Π΄Π»Ρ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ². Π§Π΅ΡΡΡΠ½Π°Π΄ΡΠ°ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² (V, Co, As, Y, Nb, Mo, Sb, La, Ce, Nd, W, Au, Th ΠΈ U) Ρ ΠΎΡΠ΅Π½Ρ Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΠΌΠΈ Π±ΡΠ»ΠΈ ΠΈΡΠΊΠ»ΡΡΠ΅Π½Ρ ΠΈΠ· ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΊ Π½Π΅Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠ΅. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅, ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΡΠ΅Π»ΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²Π»ΡΠ»Π°ΡΡ ΠΎΡΡΠ°Π±ΠΎΡΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΠ²Π½ΡΡ
ΠΈ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΡ
Π΄Π΅Π½Π΄ΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
, ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π°ΠΌΠΈ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π² Π³ΠΎΠ΄ΠΈΡΠ½ΡΡ
ΠΊΠΎΠ»ΡΡΠ°Ρ
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ Π½Π° ΡΠ°ΡΡΠΎΡΡ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡ ΠΎΠ΄Π° Ρ Π²Π·ΡΠΎΡΠ»ΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΡΠΆΠ΅Π»ΠΎΠΉ Π΄ΡΡ Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ, Π²ΡΠ·Π²Π°Π½Π½ΠΎΠΉ Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΠΎΠ½Π°Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠ΅ΠΉ
The objective: to evaluate the effect of high-flow oxygen and non-invasive ventilation on the mortality rate in adults with severe respiratory failure caused by the new coronavirus infection in the intensive care unit (ICU).Subjects and methods. A one-center retrospective study was conducted. Electronic medical files of patients treated in the ICU from April 1 to MayΒ 25,Β 2020, were analyzed. Totally, 101 medical files were selected, further, they were divided into two groups. Group 1 (n = 49) included patients who received oxygen insufflation, and should it fail, they received traditional artificial ventilation. No non-invasive respiratory therapy was used in this group. Group 2 (n = 52) included patients who received high-flow oxygen therapy and non-invasive ventilation. The mortality rate in the groups made a primary endpoint for assessing the impact of high-flow oxygen therapy and non-invasive ventilation. The following parameters were also analyzed: drug therapy, the number of patients in whom non-invasive techniques were used taking into account the frequency of cases when these techniques failed, and the number of patients in whom artificial ventilation was initiated.Results. In Group 2, non-invasive methods of respiratory therapy were used in 31 (60%) cases. High-flow oxygen therapy was used in 19 (36%) ofΒ them; in 13 cases this method allowed weaning them from the high flow. Non-invasive ventilation was used in 18 cases, in 12 patients it was used due to progressing severe respiratory failure during humidified oxygen insufflation, in 6 patients β after the failed high-flow oxygen therapy. In Group 1, 25 (51%) patients were intubated and transferred to artificial ventilation, in Group 2, 10 (19.2%) underwent the same. The lethal outcome was registered in 23 (47%) cases in Group 1, and in 10 (19.2%) in Group 2 (p = 0.004). Analysis of drug therapy in the groups revealed the difference inΒ the prescription of pathogenetic therapy. Logistic regression demonstrated the effectiveness of the combination of tocilizumab + a glucocorticoid inΒ reducing the frequency of lethal cases (p = 0.001).Conclusion. The use of non-invasive respiratory support in adults with severe respiratory failure caused by the new coronavirus infection combined with therapy by tocilizumab + a glucocorticoid can reduce the incidence of lethal cases.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΎΡΠ΅Π½ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π²ΡΡΠΎΠΊΠΎΠΏΠΎΡΠΎΡΠ½ΠΎΠΉ ΠΎΠΊΡΠΈΠ³Π΅Π½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
Π½Π° ΡΠ°ΡΡΠΎΡΡ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡ
ΠΎΠ΄Π° Ρ Π²Π·ΡΠΎΡΠ»ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΡΠΆΠ΅Π»ΠΎΠΉ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ, Π²ΡΠ·Π²Π°Π½Π½ΠΎΠΉ Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΠΎΠ½Π°Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠ΅ΠΉ, Π² ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠ΅Π°Π½ΠΈΠΌΠ°ΡΠΈΠΈ ΠΈ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ (ΠΠ ΠΠ’).ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΎΠ΄Π½ΠΎΡΠ΅Π½ΡΡΠΎΠ²ΠΎΠ΅ ΡΠ΅ΡΡΠΎΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅. ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠ΅ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΠ΅ ΠΊΠ°ΡΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², Π½Π°Ρ
ΠΎΠ΄ΠΈΠ²ΡΠΈΡ
ΡΡ Π½Π° Π»Π΅ΡΠ΅Π½ΠΈΠΈ Π² ΠΠ ΠΠ’ Ρ 1 Π°ΠΏΡΠ΅Π»Ρ ΠΏΠΎ 25 ΠΌΠ°Ρ 2020 Π³. ΠΠ±ΡΠ΅Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΎΡΠΎΠ±ΡΠ°Π½Π½ΡΡ
ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΠΊΠ°ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ»ΠΎ 101, Π΄Π°Π»Π΅Π΅ ΠΎΠ½ΠΈ Π±ΡΠ»ΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½Ρ Π½Π° Π΄Π²Π΅ Π³ΡΡΠΏΠΏΡ. Π Π³ΡΡΠΏΠΏΡ β 1 (n = 49) Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΈΠ½ΡΡΡΡΠ»ΡΡΠΈΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, Π° Π² ΡΠ»ΡΡΠ°Π΅ Π½Π΅ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ β ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΡ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΡ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
. Π Π΄Π°Π½Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ Π½Π΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ. ΠΡΡΠΏΠΏΡ β 2 (n = 52) ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ, Ρ ΠΊΠΎΡΠΎΡΡΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π²ΡΡΠΎΠΊΠΎΠΏΠΎΡΠΎΡΠ½ΡΡ ΠΎΠΊΡΠΈΠ³Π΅Π½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΡ ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡΡ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
. ΠΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ Π²Π»ΠΈΡΠ½ΠΈΡ Π²ΡΡΠΎΠΊΠΎΠΏΠΎΡΠΎΡΠ½ΠΎΠΉ ΠΎΠΊΡΠΈΠ³Π΅Π½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
ΡΡΠΈΡΠ°Π»ΠΈ ΡΠ°ΡΡΠΎΡΡ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡ
ΠΎΠ΄Π° Π² ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π³ΡΡΠΏΠΏΠ°Ρ
. ΠΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π»ΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½ΡΠΎΠ·Π½ΡΡ ΡΠ΅ΡΠ°ΠΏΠΈΡ, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², Ρ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ, ΡΡΠΈΡΡΠ²Π°Π»ΠΈ ΡΠ°ΡΡΠΎΡΡ ΠΈΡ
Π½Π΅ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ, ΡΠΈΡΠ»ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠΌ ΠΈΠ½ΠΈΡΠΈΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΡ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π² Π³ΡΡΠΏΠΏΠ΅ β 2 ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π² 31 (60%) ΡΠ»ΡΡΠ°Π΅. ΠΡΡΠΎΠΊΠΎΠΏΠΎΡΠΎΡΠ½ΡΡ ΠΎΠΊΡΠΈΠ³Π΅Π½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ Ρ 19 (36%) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΈΠ· Π½ΠΈΡ
; Π² 13 ΡΠ»ΡΡΠ°ΡΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΡΠ»ΡΡΠΈΡΡ ΠΎΡ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ°. ΠΠ΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Π°Ρ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½Π° Π² 18 ΡΠ»ΡΡΠ°ΡΡ
, Ρ 12 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΏΡΠΈ Π½Π°ΡΠ°ΡΡΠ°Π½ΠΈΠΈ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΈ ΡΡΠΆΠ΅Π»ΠΎΠΉ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ Π½Π° ΡΠΎΠ½Π΅ ΠΈΠ½ΡΡΡΡΠ»ΡΡΠΈΠΈ ΡΠ²Π»Π°ΠΆΠ½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, Ρ 6 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² β ΠΏΠΎΡΠ»Π΅ Π½Π΅ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π²ΡΡΠΎΠΊΠΎΠΏΠΎΡΠΎΡΠ½ΠΎΠΉ ΠΎΠΊΡΠΈΠ³Π΅Π½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ. ΠΠ½ΡΡΠ±Π°ΡΠΈΡ ΡΡΠ°Ρ
Π΅ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ Π½Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΡ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
Π²ΡΠΏΠΎΠ»Π½Π΅Π½Ρ Ρ 25 (51%) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π³ΡΡΠΏΠΏΡ β 1, 10 (19,2%) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π³ΡΡΠΏΠΏΡ β 2. ΠΠ΅ΡΠ°Π»ΡΠ½ΡΠΉ ΠΈΡΡ
ΠΎΠ΄ Π² Π³ΡΡΠΏΠΏΠ΅ β 1 Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π½ Π² 23 (47%) ΡΠ»ΡΡΠ°ΡΡ
, Π² Π³ΡΡΠΏΠΏΠ΅ β 2 β Π² 10 (19,2%) (p = 0,004). ΠΠ½Π°Π»ΠΈΠ· ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½ΡΠΎΠ·Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π² ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π³ΡΡΠΏΠΏΠ°Ρ
ΠΏΠΎΠΊΠ°Π·Π°Π» ΡΠ°Π·Π»ΠΈΡΠΈΠ΅ Π² Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ. ΠΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΡΠΎΡΠΈΠ»ΠΈΠ·ΡΠΌΠ°Π± + Π³Π»ΡΠΊΠΎΠΊΠΎΡΡΠΈΠΊΠΎΠΈΠ΄ Π² ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°ΡΡΠΎΡΡ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡ
ΠΎΠ΄Π° (p = 0,001).ΠΡΠ²ΠΎΠ΄. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ Ρ Π²Π·ΡΠΎΡΠ»ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΡΠΆΠ΅Π»ΠΎΠΉ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ, Π²ΡΠ·Π²Π°Π½Π½ΠΎΠΉ Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΠΎΠ½Π°Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠ΅ΠΉ, Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΡΠΎΡΠΈΠ»ΠΈΠ·ΡΠΌΠ°Π± + Π³Π»ΡΠΊΠΎΠΊΠΎΡΡΠΈΠΊΠΎΠΈΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡ
ΠΎΠ΄Π°
NAJZNAΔAJNIJE OSNOVE PATOGENEZE COVID-19
At the end of 2019, a new coronavirus infection occurred in the People's Republic of China with an epicentre in the city of Wuhan. On February 11th, 2020, the World Health Organization assigned the official name of the infection caused by the new coronavirus β COVID-19. COVID-19 has affected people from all
over the world given that the infection was noted in 200 countries resulting in annunciation of the pandemic situation. Human corona viruses cause mild to moderate respiratory infections. At the
end of 2002, a new coronavirus appeared (SARS-CoV), the causal
agent of atypical pneumonia, which caused acute respiratory distress syndrome (ARDS). The initial stage of COVID-19 infection
is the penetration of SARS-CoV-2 into target cells that have angiotensin converting enzyme type II receptors. The virus enters the
body through the respiratory tract and interacts primarily with
toll-like receptors (TLRs). The events in SARS-Cov-2 induced infection follow the next scenario: epithelial cells via TLRs recognize and identify SARS-Cov-2, and after that the information is
transmitted to the transcriptional NF-ΞΊB, which causes expression of the corresponding genes. Activated in this way, the epithelial cells begin to synthesize various biologically active molecules.
The results obtained on preclinical material indicate that ROS
generation increases and the antioxidant protection decreases,
which plays a major role in the pathogenesis of SARS-CoV, as
well as in the progression and severity of this respiratory diseasePublishe
METHOD OF THERMAL TREATMENT OF METALLIC SHOTS
FIELD: metallurgy. SUBSTANCE: invention relates to metallurgy field and to foundry. For achievement of technical result it is implemented heating of shot up to austenisation temperature and following tempering for one cycle in fluid bed, herewith it is applied bainitic hardening, temperature of which is adjusted in the range of 150-500Β°C depending on purpose of shot. Additional in cycle of thermal treatment it is excluded tempering process. EFFECT: simplification of technological cycle for receiving by thermal treatment of cast metallic shot, reduction of thermal treatment time, reduction of power inputs and conditioning of metallic shot. 1 ex, 1 tbl.ΠΠ·ΠΎΠ±ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΠΈ ΠΈ Π»ΠΈΡΠ΅ΠΉΠ½ΠΎΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Ρ. Π’Π΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π»ΠΈΡΠΎΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ, ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ, ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΎΠ·Π°ΡΡΠ°Ρ ΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ. ΠΠ»Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ Π½Π°Π³ΡΠ΅Π² Π΄ΡΠΎΠ±ΠΈ Π΄ΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π°ΡΡΡΠ΅Π½ΠΈΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΡΡ Π·Π°ΠΊΠ°Π»ΠΊΡ Π·Π° ΠΎΠ΄ΠΈΠ½ ΡΠΈΠΊΠ» Π² ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠΆΠΈΠΆΠ΅Π½Π½ΠΎΠΌ ΡΠ»ΠΎΠ΅, ΠΏΡΠΈΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΈΠ·ΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π°ΠΊΠ°Π»ΠΊΠ°, ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΡΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
Π² 150-500Β°Π‘ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±ΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ Π² ΡΠΈΠΊΠ»Π΅ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈΡΠΊΠ»ΡΡΠ°Π΅ΡΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΡ ΠΎΡΠΏΡΡΠΊΠ°. 1 ΡΠ°Π±Π»
- β¦