4,068 research outputs found

    Completely integrable systems: a generalization

    Full text link
    We present a slight generalization of the notion of completely integrable systems to get them being integrable by quadratures. We use this generalization to integrate dynamical systems on double Lie groups.Comment: Latex, 15 page

    Lagrangian submanifolds and dynamics on Lie affgebroids

    Full text link
    We introduce the notion of a symplectic Lie affgebroid and their Lagrangian submanifolds in order to describe the Lagrangian (Hamiltonian) dynamics on a Lie affgebroid in terms of this type of structures. Several examples are discussed.Comment: 50 pages. Several sections update

    On quasi-Jacobi and Jacobi-quasi bialgebroids

    Get PDF
    We study quasi-Jacobi and Jacobi-quasi bialgebroids and their relationships with twisted Jacobi and quasi Jacobi manifolds. We show that we can construct quasi-Lie bialgebroids from quasi-Jacobi bialgebroids, and conversely, and also that the structures induced on their base manifolds are related via a quasi Poissonization

    Poisson-Jacobi reduction of homogeneous tensors

    Full text link
    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold MM, homogeneous with respect to a vector field Δ\Delta on MM, and first-order polydifferential operators on a closed submanifold NN of codimension 1 such that Δ\Delta is transversal to NN. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on MM to the Schouten-Jacobi bracket of first-order polydifferential operators on NN and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can be also understood as a sort of reduction; in the standard case -- a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ\Delta-homogeneous symplectic structures on MM and contact structures on NN.Comment: 19 pages, minor corrections, final version to appear in J. Phys. A: Math. Ge

    A variational principle for volume-preserving dynamics

    Full text link
    We provide a variational description of any Liouville (i.e. volume preserving) autonomous vector fields on a smooth manifold. This is obtained via a ``maximal degree'' variational principle; critical sections for this are integral manifolds for the Liouville vector field. We work in coordinates and provide explicit formulae

    Integration of Dirac-Jacobi structures

    Full text link
    We study precontact groupoids whose infinitesimal counterparts are Dirac-Jacobi structures. These geometric objects generalize contact groupoids. We also explain the relationship between precontact groupoids and homogeneous presymplectic groupoids. Finally, we present some examples of precontact groupoids.Comment: 10 pages. Brief changes in the introduction. References update

    Hubbard Models as Fusion Products of Free Fermions

    Full text link
    A class of recently introduced su(n) `free-fermion' models has recently been used to construct generalized Hubbard models. I derive an algebra defining the `free-fermion' models and give new classes of solutions. I then introduce a conjugation matrix and give a new and simple proof of the corresponding decorated Yang-Baxter equation. This provides the algebraic tools required to couple in an integrable way two copies of free-fermion models. Complete integrability of the resulting Hubbard-like models is shown by exhibiting their L and R matrices. Local symmetries of the models are discussed. The diagonalization of the free-fermion models is carried out using the algebraic Bethe Ansatz.Comment: 14 pages, LaTeX. Minor modification

    A general framework for nonholonomic mechanics: Nonholonomic Systems on Lie affgebroids

    Get PDF
    This paper presents a geometric description of Lagrangian and Hamiltonian systems on Lie affgebroids subject to affine nonholonomic constraints. We define the notion of nonholonomically constrained system, and characterize regularity conditions that guarantee that the dynamics of the system can be obtained as a suitable projection of the unconstrained dynamics. It is shown that one can define an almost aff-Poisson bracket on the constraint AV-bundle, which plays a prominent role in the description of nonholonomic dynamics. Moreover, these developments give a general description of nonholonomic systems and the unified treatment permits to study nonholonomic systems after or before reduction in the same framework. Also, it is not necessary to distinguish between linear or affine constraints and the methods are valid for explicitly time-dependent systems.Comment: 50 page
    corecore