239 research outputs found
Improving the Success of Non-Traditional Students in an Introductory Computing Course
This Work in Progress Research to Practice paper presents a redesign of an introduction to computing course at a public, minority serving institution in the United States with a majority of non-traditional students. The course redesign was motivated by the desire to improve the success of the students in this course and in the major. Active learning during class and required attendance were the major components of the course redesign. The course policies included flexibility for the occasional absences that are expected with non-traditional students. A comparison of student performance in the experimental and control sections indicated that the requirement of active participation during class is not detrimental to studentsâ performance in the course
Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice
<p>Abstract</p> <p>Background</p> <p>The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors.</p> <p>Methods</p> <p>C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine.</p> <p>Results</p> <p>Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice.</p> <p>Conclusions</p> <p>Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine.</p
Characterization of Highper, an ENU-induced mouse mutant with abnormal psychostimulant and stress responses
RationaleChemical mutagenesis in the mouse is a forward genetics approach that introduces random mutations into the genome, thereby providing an opportunity to annotate gene function and characterize phenotypes that have not been previously linked to a given gene.ObjectivesWe report on the behavioral characterization of Highper, an N-ethyl-N-nitrosourea (ENU)-induced mutant mouse line.MethodsHighper and B6 control mice were assessed for locomotor activity in the open field and home cage environments. Basal and acute restraint stress-induced corticosterone levels were measured. Mice were tested for locomotor response to cocaine (5, 20, 30, and 45mg/kg), methylphenidate (30mg/kg), and ethanol (0.75, 1.25, and 1.75g/kg). The rewarding and reinforcing effects of cocaine were assessed using conditioned place preference and self-administration paradigms.ResultsHighper mice are hyperactive during behavioral tests but show normal home cage locomotor behavior. Highper mice also exhibit a twofold increase in locomotor response to cocaine, methylphenidate, and ethanol and prolonged activation of the hypothalamicâpituitaryâadrenal axis in response to acute stress. Highper mice are more sensitive to the rewarding and reinforcing effects of cocaine, although place preference in Highper mice appears to be significantly influenced by the environment in which the drug is administered.ConclusionsAltogether, our findings indicate that Highper mice may provide important insights into the genetic, molecular, and biological mechanisms underlying stress and the drug reward pathway.Electronic supplementary materialThe online version of this article (doi:10.1007/s00213-012-2827-5) contains supplementary material, which is available to authorized users
Incidence of cognitively defined late-onset Alzheimer\u27s dementia subgroups from a prospective cohort study.
INTRODUCTION: There may be biologically relevant heterogeneity within typical late-onset Alzheimer\u27s dementia.
METHODS: We analyzed cognitive data from people with incident late-onset Alzheimer\u27s dementia from a prospective cohort study. We determined individual averages across memory, visuospatial functioning, language, and executive functioning. We identified domains with substantial impairments relative to that average. We compared demographic, neuropathology, and genetic findings across groups defined by relative impairments.
RESULTS: During 32,286 person-years of follow-up, 869 people developed Alzheimer\u27s dementia. There were 393 (48%) with no domain with substantial relative impairments. Some participants had isolated relative impairments in memory (148, 18%), visuospatial functioning (117, 14%), language (71, 9%), and executive functioning (66, 8%). The group with isolated relative memory impairments had higher proportions with ℠APOE Δ4 allele, more extensive Alzheimer\u27s-related neuropathology, and higher proportions with other Alzheimer\u27s dementia genetic risk variants.
DISCUSSION: A cognitive subgrouping strategy may identify biologically distinct subsets of people with Alzheimer\u27s dementia
Incidence of cognitively defined late-onset Alzheimer's dementia subgroups from a prospective cohort study
INTRODUCTION:
There may be biologically relevant heterogeneity within typical late-onset Alzheimer's dementia.
METHODS:
We analyzed cognitive data from people with incident late-onset Alzheimer's dementia from a prospective cohort study. We determined individual averages across memory, visuospatial functioning, language, and executive functioning. We identified domains with substantial impairments relative to that average. We compared demographic, neuropathology, and genetic findings across groups defined by relative impairments.
RESULTS:
During 32,286 person-years of follow-up, 869 people developed Alzheimer's dementia. There were 393 (48%) with no domain with substantial relative impairments. Some participants had isolated relative impairments in memory (148, 18%), visuospatial functioning (117, 14%), language (71, 9%), and executive functioning (66, 8%). The group with isolated relative memory impairments had higher proportions with ℠APOE Δ4 allele, more extensive Alzheimer's-related neuropathology, and higher proportions with other Alzheimer's dementia genetic risk variants.
DISCUSSION:
A cognitive subgrouping strategy may identify biologically distinct subsets of people with Alzheimer's dementia
Remodeling the Proteostasis Network to Rescue Glucocerebrosidase Variants by Inhibiting ER-Associated Degradation and Enhancing ER Folding
Gaucherâs disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the proteinâs native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition
Pharmaceutical Regulation and Health Policy Objectives
This paper analyzes a maximum price system and a reference price system in a vertical differentiation model with a brand-name drug and a generic. In particular, both instruments are compared with respect to their performance in reducing public expenditure, limiting financial exposure of patients, improving access to pharmaceuticals, and stimulating competition. For identical regulatory prices, free pricing under the reference system tends to result in a higher price for the brand-name drug. For identical price reductions of the brand-name drug, the lower reimbursement amount under the reference price system results in lower health expenditure, but higher financial exposure of patients. Total welfare is higher under the maximum price system
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
- âŠ