4,137 research outputs found

    Lie algebroid structures on a class of affine bundles

    Get PDF
    We introduce the notion of a Lie algebroid structure on an affine bundle whose base manifold is fibred over the real numbers. It is argued that this is the framework which one needs for coming to a time-dependent generalization of the theory of Lagrangian systems on Lie algebroids. An extensive discussion is given of a way one can think of forms acting on sections of the affine bundle. It is further shown that the affine Lie algebroid structure gives rise to a coboundary operator on such forms. The concept of admissible curves and dynamical systems whose integral curves are admissible, brings an associated affine bundle into the picture, on which one can define in a natural way a prolongation of the original affine Lie algebroid structure.Comment: 28 page

    Construction of completely integrable systems by Poisson mappings

    Full text link
    Pulling back sets of functions in involution by Poisson mappings and adding Casimir functions during the process allows to construct completely integrable systems. Some examples are investigated in detail.Comment: AmsTeX, 9 page

    Completely integrable systems: a generalization

    Full text link
    We present a slight generalization of the notion of completely integrable systems to get them being integrable by quadratures. We use this generalization to integrate dynamical systems on double Lie groups.Comment: Latex, 15 page

    Generalized n-Poisson brackets on a symplectic manifold

    Full text link
    On a symplectic manifold a family of generalized Poisson brackets associated with powers of the symplectic form is studied. The extreme cases are related to the Hamiltonian and Liouville dynamics. It is shown that the Dirac brackets can be obtained in a similar way.Comment: Latex, 10 pages, to appear in Mod. Phys. Lett.

    Modular classes of skew algebroid relations

    Full text link
    Skew algebroid is a natural generalization of the concept of Lie algebroid. In this paper, for a skew algebroid E, its modular class mod(E) is defined in the classical as well as in the supergeometric formulation. It is proved that there is a homogeneous nowhere-vanishing 1-density on E* which is invariant with respect to all Hamiltonian vector fields if and only if E is modular, i.e. mod(E)=0. Further, relative modular class of a subalgebroid is introduced and studied together with its application to holonomy, as well as modular class of a skew algebroid relation. These notions provide, in particular, a unified approach to the concepts of a modular class of a Lie algebroid morphism and that of a Poisson map.Comment: 20 page

    The Structure of Conserved Charges in Open Spin Chains

    Get PDF
    We study the local conserved charges in integrable spin chains of the XYZ type with nontrivial boundary conditions. The general structure of these charges consists of a bulk part, whose density is identical to that of a periodic chain, and a boundary part. In contrast with the periodic case, only charges corresponding to interactions of even number of spins exist for the open chain. Hence, there are half as many charges in the open case as in the closed case. For the open spin-1/2 XY chain, we derive the explicit expressions of all the charges. For the open spin-1/2 XXX chain, several lowest order charges are presented and a general method of obtaining the boundary terms is indicated. In contrast with the closed case, the XXX charges cannot be described in terms of a Catalan tree pattern.Comment: 22 pages, harvmac.tex (minor clarifications and reference corrections added

    Modular classes of Poisson-Nijenhuis Lie algebroids

    Get PDF
    The modular vector field of a Poisson-Nijenhuis Lie algebroid AA is defined and we prove that, in case of non-degeneracy, this vector field defines a hierarchy of bi-Hamiltonian AA-vector fields. This hierarchy covers an integrable hierarchy on the base manifold, which may not have a Poisson-Nijenhuis structure.Comment: To appear in Letters in Mathematical Physic
    corecore