18 research outputs found

    Update on Immunodeficiency-Associated Vaccine-Derived Polioviruses - Worldwide, July 2018-December 2019.

    Get PDF
    Since establishment of the Global Polio Eradication Initiative* in 1988, polio cases have declined >99.9% worldwide; extensive use of live, attenuated oral poliovirus vaccine (OPV) in routine childhood immunization programs and mass campaigns has led to eradication of two of the three wild poliovirus (WPV) serotypes (types 2 and 3) (1). Despite its safety record, OPV can lead to rare emergence of vaccine-derived polioviruses (VDPVs) when there is prolonged circulation or replication of the vaccine virus. In areas with inadequate OPV coverage, circulating VDPVs (cVDPVs) that have reverted to neurovirulence can cause outbreaks of paralytic polio (2). Immunodeficiency-associated VDPVs (iVDPVs) are isolated from persons with primary immunodeficiency (PID). Infection with iVDPV can progress to paralysis or death of patients with PID, and excretion risks seeding cVDPV outbreaks; both risks might be reduced through antiviral treatment, which is currently under development. This report updates previous reports and includes details of iVDPV cases detected during July 2018-December 2019 (3). During this time, 16 new iVDPV cases were reported from five countries (Argentina, Egypt, Iran, Philippines, and Tunisia). Alongside acute flaccid paralysis (AFP) surveillance (4), surveillance for poliovirus infections among patients with PID has identified an increased number of persons excreting iVDPVs (5). Expansion of PID surveillance will facilitate early detection and follow-up of iVDPV excretion among patients with PID to mitigate the risk for iVDPV spread. This will be critical to help identify all poliovirus excretors and thus achieve and maintain eradication of all polioviruses

    Evaluation of the World Health Organization Global Invasive Bacterial Vaccine-Preventable Disease (IB-VPD) Surveillance Network's Laboratory External Quality Assessment Programme, 2014-2019

    Get PDF
    Introduction. In 2009, the World Health Organization (WHO) established the Global Invasive Bacterial Vaccine Preventable Disease (IB-VPD) Surveillance Network (GISN) to monitor the global burden and aetiology of bacterial meningitis, pneumonia and sepsis caused by Haemophilus influenzae (Hi), Neisseria meningitidis (Nm) and Streptococcus pneumoniae (Sp).Hypothesis/Gap Statement. The GISN established an external quality assessment (EQA) programme for the characterization of Hi, Nm and Sp by culture and diagnostic PCR.Aim. To assess the performance of sentinel site laboratories (SSLs), national laboratories (NLs) and regional reference laboratories (RRLs) between 2014 and 2019 in the EQA programme.Methodology. Test samples consisted of bacterial smears for Gram-staining, viable isolates for identification and serotyping or serogrouping (ST/SG), plus simulated cerebrospinal fluid (CSF) samples for species detection and ST/SG by PCR. SSLs and NLs were only required to analyse the slides for Gram staining and identify the species of the live isolates. RRLs, and any SLs and NLs that had the additional laboratory capacity, were also required to ST/SG the viable isolates and analyse the simulated CSF samples.Results. Across the period, 69-112 SS/NL labs and eight or nine RRLs participated in the EQA exercise. Most participants correctly identified Nm and Sp in Gram-stained smears but were less successful with Hi and other species. SSLs/NLs identified the Hi, Nm and Sp cultures well and also submitted up to 56 % of Hi, 62 % of Nm and 33 % of Sp optional ST/SG results each year. There was an increasing trend in the proportion of correct results submitted over the 6 years for Nm and Sp. Some SSLs/NLs also performed the optional detection and ST/SG of the three organisms by PCR in simulated CSF from 2015 onwards; 89-100 % of the CSF samples were correctly identified and 76-93 % of Hi-, 90-100 % of Nm- and 75-100 % of Sp-positive samples were also correctly ST/SG across the distributions. The RRLs performed all parts of the EQA to a very high standard, with very few errors across all aspects of the EQA.Conclusion. The EQA has been an important tool in maintaining high standards of laboratory testing and building of laboratory capacity in the GISN

    Risk factors for mortality among children under 5 years of age with severe diarrhea in low- and middle-income countries: Findings from the WHO-coordinated Global Rotavirus and Pediatric Diarrhea Surveillance Networks.

    Get PDF
    BACKGROUND: Diarrhea is the second leading cause of death in children under five years of age globally. The burden of diarrheal mortality is concentrated in low-resource settings. Little is known about the risk factors for childhood death from diarrheal disease in low and middle-income countries. METHODS: Data from the WHO-coordinated Global Rotavirus and Pediatric Diarrhea Surveillance Networks, which are composed of active, sentinel, hospital-based surveillance sites, were analyzed to assess mortality in children less than five years of age who were hospitalized with diarrhea between 2008-2018. Case fatality risks were calculated, and multivariable logistic regression was performed to identify risk factors for mortality. RESULTS: This analysis is comprised of 234,781 cases, including 1,219 deaths, across 57 countries. The overall case fatality risk was found to be 0.5%. Risk factors for death in the multivariable analysis included younger age (for <6 months compared with older ages, OR = 3.54; 95% CI = 2.81-4.50), female sex (OR = 1.18; 95% CI= 1.06-1.81), presenting with persistent diarrhea (OR = 1.91; 95% CI= 1.01-3.25), no vomiting (OR = 1.13, 95% CI= 0.98-1.30), severe dehydration (OR = 3.79; 95% CI = 3.01-4.83), and being negative for rotavirus on an ELISA test (OR = 2.29; 95% CI= 1.92-2.74). Cases from the African Region had the highest odds of death compared with other WHO Regions (OR = 130.62 comparing the African Region to the European region; 95% CI= 55.72-422.73), while cases from the European region had the lowest odds of death. CONCLUSIONS: Our findings support known risk factors for childhood diarrheal mortality and highlight the need for interventions to address dehydration and rotavirus-negative diarrheal infections

    The impact of the rotavirus vaccine on diarrhoea, five years following national introduction in Fiji.

    Get PDF
    BACKGROUND: In 2012, Fiji became the first independent Pacific island country to introduce rotavirus vaccine. We describe the impact of rotavirus vaccine on all-cause diarrhoea admissions in all ages, and rotavirus diarrhoea in children <5 years of age. METHODS: An observational study was conducted retrospectively on all admissions to the public tertiary hospitals in Fiji (2007-2018) and prospectively on all rotavirus-positive diarrhoea admissions in children <5 years at two hospital sites (2006-2018, and 2010-2015), along with rotavirus diarrhoea outpatient presentations at one secondary public hospital (2010-2015). The impact of rotavirus vaccine was determined using incidence rate ratios (IRR) of all-cause diarrhoea admissions and rotavirus diarrhoea, comparing the pre-vaccine and post-vaccine periods. All-cause admissions were used as a control. Multiple imputation was used to impute missing stool samples. FINDINGS: All-cause diarrhoea admissions declined among all age groups except among infants ≤2 months old and adults ≥55 years. For children <5 years, all-cause diarrhoea admissions declined by 39% (IRR)=0•61, 95%CI; 0•57-0•65, p-value<0•001). There was an 81% (95%CI; 51-94%) reduction in mortality among all-cause diarrhoea admissions in children under <5 years. Rotavirus diarrhoea admissions at the largest hospital among children <5 years declined by 87% (IRR=0•13, 95%CI; 0•10-0•17, p-value<0•001). Among rotavirus diarrhoea outpatient presentations, the IRR was 0•39 (95%CI; 0•11, 1.21, p-value=0.077). INTERPRETATIONS: Morbidity and mortality due to rotavirus and all-cause diarrhoea in Fiji has declined in people aged 2 months to 54 years after the introduction of the RV vaccine. FUNDING: Supported by WHO and the Australian Government

    The Global Landscape of Pediatric Bacterial Meningitis Data Reported to the World Health Organization-Coordinated Invasive Bacterial Vaccine-Preventable Disease Surveillance Network, 2014-2019.

    Get PDF
    BACKGROUND: The World Health Organization (WHO) coordinates the Global Invasive Bacterial Vaccine-Preventable Diseases (IB-VPD) Surveillance Network to support vaccine introduction decisions and use. The network was established to strengthen surveillance and laboratory confirmation of meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis. METHODS: Sentinel hospitals report cases of children 137 000 suspected meningitis cases were reported by 58 participating countries, with 44.6% (n = 61 386) reported from countries in the WHO African Region. More than half (56.6%, n = 77 873) were among children <1 year of age, and 4.0% (n = 4010) died among those with reported disease outcome. Among suspected meningitis cases, 8.6% (n = 11 798) were classified as probable bacterial meningitis. One of 3 bacterial pathogens was identified in 30.3% (n = 3576) of these cases, namely S. pneumoniae (n = 2177 [60.9%]), H. influenzae (n = 633 [17.7%]), and N. meningitidis (n = 766 [21.4%]). Among confirmed bacterial meningitis cases with outcome reported, 11.0% died; case fatality ratio varied by pathogen (S. pneumoniae, 12.2%; H. influenzae, 6.1%; N. meningitidis, 11.0%). Among the 277 children who died with confirmed bacterial meningitis, 189 (68.2%) had confirmed S. pneumoniae. The proportion of pneumococcal cases with pneumococcal conjugate vaccine (PCV) serotypes decreased as the number of countries implementing PCV increased, from 77.8% (n = 273) to 47.5% (n = 248). Of 397 H. influenzae specimens serotyped, 49.1% (n = 195) were type b. Predominant N. meningitidis serogroups varied by region. CONCLUSIONS: This multitier, global surveillance network has supported countries in detecting and serotyping the 3 principal invasive bacterial pathogens that cause pediatric meningitis. Streptococcus pneumoniae was the most common bacterial pathogen detected globally despite the growing number of countries that have nationally introduced PCV. The large proportions of deaths due to S. pneumoniae reflect the high proportion of meningitis cases caused by this pathogen. This global network demonstrated a strong correlation between PCV introduction status and reduction in the proportion of pneumococcal meningitis infections caused by vaccine serotypes. Maintaining case-based, active surveillance with laboratory confirmation for prioritized vaccine-preventable diseases remains a critical component of the global agenda in public health.The World Health Organization (WHO)-coordinated Invasive Bacterial Vaccine-Preventable Disease (IB-VPD) Surveillance Network reported data from 2014 to 2019, contributing to the estimates of the disease burden and serotypes of pediatric meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis

    Aetiology and incidence of diarrhoea requiring hospitalisation in children under 5 years of age in 28 low-income and middle-income countries: findings from the Global Pediatric Diarrhea Surveillance network.

    Get PDF
    Introduction: Diarrhoea remains a leading cause of child morbidity and mortality. Systematically collected and analysed data on the aetiology of hospitalised diarrhoea in low-income and middle-income countries are needed to prioritise interventions. Methods: We established the Global Pediatric Diarrhea Surveillance network, in which children under 5 years hospitalised with diarrhoea were enrolled at 33 sentinel surveillance hospitals in 28 low-income and middle-income countries. Randomly selected stool specimens were tested by quantitative PCR for 16 causes of diarrhoea. We estimated pathogen-specific attributable burdens of diarrhoeal hospitalisations and deaths. We incorporated country-level incidence to estimate the number of pathogen-specific deaths on a global scale. Results: During 2017–2018, 29 502 diarrhoea hospitalisations were enrolled, of which 5465 were randomly selected and tested. Rotavirus was the leading cause of diarrhoea requiring hospitalisation (attributable fraction (AF) 33.3%; 95% CI 27.7 to 40.3), followed by Shigella (9.7%; 95% CI 7.7 to 11.6), norovirus (6.5%; 95% CI 5.4 to 7.6) and adenovirus 40/41 (5.5%; 95% CI 4.4 to 6.7). Rotavirus was the leading cause of hospitalised diarrhoea in all regions except the Americas, where the leading aetiologies were Shigella (19.2%; 95% CI 11.4 to 28.1) and norovirus (22.2%; 95% CI 17.5 to 27.9) in Central and South America, respectively. The proportion of hospitalisations attributable to rotavirus was approximately 50% lower in sites that had introduced rotavirus vaccine (AF 20.8%; 95% CI 18.0 to 24.1) compared with sites that had not (42.1%; 95% CI 33.2 to 53.4). Globally, we estimated 208 009 annual rotavirus-attributable deaths (95% CI 169 561 to 259 216), 62 853 Shigella-attributable deaths (95% CI 48 656 to 78 805), 36 922 adenovirus 40/41-attributable deaths (95% CI 28 469 to 46 672) and 35 914 norovirus-attributable deaths (95% CI 27 258 to 46 516). Conclusions: Despite the substantial impact of rotavirus vaccine introduction, rotavirus remained the leading cause of paediatric diarrhoea hospitalisations. Improving the efficacy and coverage of rotavirus vaccination and prioritising interventions against Shigella, norovirus and adenovirus could further reduce diarrhoea morbidity and mortality

    Molecular epidemiology of Bordetella pertussis in Cambodia determined by direct genotyping of clinical specimens

    No full text
    Objectives: This study sought to determine the genotypes of circulating Bordetella pertussis, the causative agent of pertussis, in Cambodia by direct molecular typing of clinical specimens. Methods: DNA extracts from nasopharyngeal swabs obtained from 82 pertussis patients in 2008–2016 were analyzed by multilocus variable-number tandem repeat analysis (MLVA). B. pertussis virulence-associated allelic genes (ptxA, prn, and fim3) and the pertussis toxin promoter ptxP were also investigated by DNA sequence-based typing. Results: Forty-four DNA extracts (54%) yielded a complete MLVA profile, and these were sorted into 8 MLVA types (MT18, MT26, MT27, MT29, MT43, MT72, MT95, and MT200). MT27 and MT29, which are common in developed countries, were the predominant strain types (total 73%). The predominant profile of virulence-associated allelic genes was the combination of ptxP3/ptxA1/prn2/fim3A (48%). MT27 strains were detected during the entire study period, whereas MT29 strains were only found in 2014–2016. Conclusions: The B. pertussis population in Cambodia, where a whole-cell pertussis vaccine (WCV) has been continuously used, resembled those observed previously in developed countries where acellular pertussis vaccines are used. Circulating B. pertussis strains in Cambodia were distinct from those in other countries using WCVs

    Genotype Diversity before and after the Introduction of a Rotavirus Vaccine into the National Immunisation Program in Fiji

    Get PDF
    The introduction of the rotavirus vaccine, Rotarix, into the Fiji National Immunisation Program in 2012 has reduced the burden of rotavirus disease and hospitalisations in children less than 5 years of age. The aim of this study was to describe the pattern of rotavirus genotype diversity from 2005 to 2018; to investigate changes following the introduction of the rotavirus vaccine in Fiji. Faecal samples from children less than 5 years with acute diarrhoea between 2005 to 2018 were analysed at the WHO Rotavirus Regional Reference Laboratory at the Murdoch Children’s Research Institute, Melbourne, Australia, and positive samples were serotyped by EIA (2005–2006) or genotyped by heminested RT-PCR (2007 onwards). We observed a transient increase in the zoonotic strain equine-like G3P[8] in the initial period following vaccine introduction. G1P[8] and G2P[4], dominant genotypes prior to vaccine introduction, have not been detected since 2015 and 2014, respectively. A decrease in rotavirus genotypes G2P[8], G3P[6], G8P[8] and G9P[8] was also observed following vaccine introduction. Monitoring the rotavirus genotypes that cause diarrhoeal disease in children in Fiji is important to ensure that the rotavirus vaccine will continue to be protective and to enable early detection of new vaccine escape strains if this occurs
    corecore