7 research outputs found

    Markers for DNA damage are induced in the rat colon by the Alternaria toxin altertoxin-II, but not a complex extract of cultured Alternaria alternata

    No full text
    Mycotoxins produced by Alternaria spp. act genotoxic in cell-based studies, but data on their toxicity in vivo is scarce and urgently required for risk assessment. Thus, male Sprague-Dawley rats received single doses of a complex Alternaria toxin extract (CE; 50 mg/kg bw), altertoxin II (ATX-II; 0.21 mg/kg bw) or vehicle by gavage, one of the most genotoxic metabolites in vitro and were sacrificed after 3 or 24 h, respectively. Using SDS-PAGE/Western Blot, a significant increase of histone 2a.X phosphorylation and depletion of the native protein was observed for rats that were exposed to ATX-II for 24 h. Applying RT-PCR array technology we identified genes of interest for qRT-PCR testing, which in turn confirmed an induction of Rnf8 transcription in the colon of rats treated with ATX-II for 3 h and CE for 24 h. A decrease of Cdkn1a transcription was observed in rats exposed to ATX-II for 24 h, possibly indicating tissue repair after chemical injury. In contrast to the observed response in the colon, no markers for genotoxicity were induced in the liver of treated animals. We hereby provide the first report of ATX-II as a genotoxicant in vivo. Deviating results for similar concentrations of ATX-II in a natural Alternaria toxin mixture argue for substantial mixture effects.ISSN:2673-308

    Silica particles with a quercetin–R5 peptide conjugate are taken up into HT-29 cells and translocate into the nucleus

    No full text
    Intracellular delivery of bioactive polyphenols is currently evaluated as a protective strategy for cells under pharmaceutical stress. To this end, the 20mer R5 peptide from the marine diatom C. fusiformis was N-terminally modified with a quercetin derivative. This polyphenol–peptide conjugate was used to generate homogeneous silica particles under biomimetic conditions that are efficiently taken up by eukaryotic cells without being cytotoxic. However, not only was accumulation in the cytoplasm of living cells observed via electron and fluorescence microscopy but also translocation into the nucleus. The latter was only seen when the quercetin–peptide conjugate was present within the silica particles and provides a novel targeting option for silica particles to nuclei

    Bioavailability, metabolism, and excretion of a complex Alternaria culture extract versus altertoxin II: a comparative study in rats

    No full text
    Despite the frequent infection of agricultural crops by Alternaria spp., their toxic secondary metabolites and potential food contaminants lack comprehensive metabolic characterization. In this study, we investigated their bioavailability, metabolism, and excretion in vivo. A complex Alternaria culture extract (50 mg/kg body weight) containing 11 known toxins and the isolated lead toxin altertoxin II (0.7 mg/kg body weight) were administered per gavage to groups of 14 Sprague Dawley rats each. After 3 h and 24 h, plasma, urine and feces were collected to determine toxin recoveries. For reliable quantitation, an LC–MS/MS method for the simultaneous detection of 20 Alternaria toxins and metabolites was developed and optimized for either biological matrix. The obtained results demonstrated efficient excretion of alternariol (AOH) and its monomethyl ether (AME) via feces (> 89%) and urine (> 2.6%) after 24 h, while the majority of tenuazonic acid was recovered in urine (20 and 87% after 3 and 24 h, respectively). Moreover, modified forms of AOH and AME were identified in urine and fecal samples confirming both, mammalian phase-I (4-hydroxy-AOH) and phase-II (sulfates) biotransformation in vivo. Despite the comparably high doses, perylene quinones were recovered only at very low levels (altertoxin I, alterperylenol, < 0.06% in urine and plasma, < 5% in feces) or not at all (highly genotoxic, epoxide-holding altertoxin II, stemphyltoxin III). Interestingly, altertoxin I was detected in all matrices of rats receiving altertoxin II and suggests enzymatic de-epoxidation in vivo. In conclusion, the present study contributes valuable information to advance our understanding of the emerging Alternaria mycotoxins and their relevance on food safety.© The Author(s) 201
    corecore