8,692 research outputs found

    Ab initio study of the CE magnetic phase in half-doped manganites: Purely magnetic versus double exchange description

    Full text link
    The leading electronic interactions governing the local physics of the CE phase of half-doped manganites are extracted from correlated ab initio calculations performed on an embedded cluster. The electronic structure of the low-energy states is dominated by double exchange configurations and O-2pσp_{\sigma} to Mn-3d charge transfer configurations. The model spectra of both a purely magnetic non-symmetric Heisenberg Hamiltonian involving a magnetic oxygen and two non-symmetric double exchange models are compared to the \textit{ab initio} one. While a satisfactory agreement between the Heisenberg spectrum and the calculated one is obtained, the best description is provided by a double exchange model involving excited non-Hund atomic states. This refined model not only perfectly reproduces the spectrum of the embedded cluster in the crystal geometry, but also gives a full description of the local double-well potential energy curve of the ground state (resulting from the interaction of the charge localized electronic configurations) and the local potential energy curves of all excited states ruled by the double exchange mechanism

    Effects of retro-nasal aroma release on satiation

    Get PDF
    It is suggested that the brain response of a food odour sensed retro-nasally is related to satiation. The extent of retro-nasal aroma release during consumption depends on the physical structure of a food, i.e. solid foods generate a longer, more pronounced retro-nasal aroma release than liquid foods. The aim of this study was to investigate if a beverage becomes more satiating when the retro-nasal aroma release profile coincides with the profile of a (soft) solid food. In a double-blind placebo-controlled randomised cross-over full factorial design, twenty-seven healthy subjects (fourteen males and thirteen females; aged 16-65 years; BMI 19-37 kg/m(2) were administered aroma profiles by a computer-controlled stimulator based on air dilution olfactometry. Profile A consisted of a profile that is obtained during consumption of normal beverages. Profile B is normally observed during consumption of (soft) solids. The two profiles were produced with strawberry aroma and administered in a retro-nasal fashion, while the subjects consumed a sweetened milk drink. Before, during and after the sensory stimulation, appetite profile measurements were performed. Subjects felt significantly more satiated if they were aroma stimulated with profile B (P = 0.04). After stimulation with sweet strawberry aroma, there was a significant decrease in desire to eat sweet products (P = 0.0001). In conclusion, perceived satiation was increased by altering the extent of retro-nasal aroma release

    Effects of repeated consumption on sensory-enhanced satiety

    Get PDF
    Previous research suggests that sensory characteristics of a drink modify the acute satiating effects of its nutrients, with enhanced satiety evident when a high energy drink was thicker and tasted creamier. The present study tested whether this modulation of satiety by sensory context was altered by repeated consumption. Participants (n=48) consumed one of four drinks mid-morning on seven non-consecutive days with satiety responses measured pre-exposure (day 1), post-exposure (day 6) and at a one month follow-up. Drinks combined two levels of energy (lower energy, LE, 326 KJ: higher energy, HE, 1163KJ) with two levels of satiety-predictive sensory characteristics (low-sensory, LS, or enhanced sensory, ES). Test lunch intake 90 minutes after drink consumption depended on both the energy content and sensory characteristics of the drink before exposure, but on energy content alone at post-exposure and the follow-up. The largest change was an increase in test meal intake over time in the LE/LS condition. Effects on intake were reflected in appetite ratings, with rated hunger and expected filling affected by sensory characteristics and energy content pre-exposure, but were largely determined by energy content post exposure and at follow up. In contrast, a measure of expected satiety reflected sensory characteristics regardless of energy content on all three test days. Overall these data suggest that some aspects of the sensory-modulation of satiety are changed by repeated consumption, with covert energy becoming more effective in suppressing appetite over time, but also suggest that these behavioural changes are not readily translated into expectations of satiety

    De techniek : wat doet die ertoe?

    Get PDF

    Renormalization of the quasiparticle hopping integrals by spin interactions in layered copper oxides

    Full text link
    Holes doped within the square CuO2 network specific to the cuprate superconducting materials have oxygen 2p character. We investigate the basic properties of such oxygen holes by wavefunction-based quantum chemical calculations on large embedded clusters. We find that a 2p hole induces ferromagnetic correlations among the nearest-neighbor Cu 3d spins. When moving through the antiferromagnetic background the hole must bring along this spin polarization cloud at nearby Cu sites, which gives rise to a substantial reduction of the effective hopping parameters. Such interactions can explain the relatively low values inferred for the effective hoppings by fitting the angle-resolved photoemission data. The effect of the background antiferromagnetic couplings of renormalizing the effective nearest-neighbor hopping is also confirmed by density-matrix renormalization-group model Hamiltonian calculations for chains and ladders of CuO4 plaquettes

    A Triangular Tessellation Scheme for the Adsorption Free Energy at the Liquid-Liquid Interface: Towards Non-Convex Patterned Colloids

    Full text link
    We introduce a new numerical technique, namely triangular tessellation, to calculate the free energy associated with the adsorption of a colloidal particle at a flat interface. The theory and numerical scheme presented here are sufficiently general to handle non-convex patchy colloids with arbitrary surface patterns characterized by a wetting angle, e.g., amphiphilicity. We ignore interfacial deformation due to capillary, electrostatic, or gravitational forces, but the method can be extended to take such effects into account. It is verified that the numerical method presented is accurate and sufficiently stable to be applied to more general situations than presented in this paper. The merits of the tessellation method prove to outweigh those of traditionally used semi-analytic approaches, especially when it comes to generality and applicability.Comment: 21 pages, 11 figures, 0 table

    Development of a small-scale protope of the GOSSIPO-2 chip in 0.13 um CMOS technology

    Get PDF
    The GOSSIP (Gas On Slimmed Silicon Pixel) detector is a proposed alternative for silicon based pixel detectors. The Gossip Prototype (GOSSIPO) chip is being developed to serve as a prototype read-out chip for such a gas-filled detector. Thanks to the very low capacitance at the preamplifier input, the front-end of the chip demonstrates low-noise performance in combination with a fast peaking time and low analog power dissipation. Measurement of the drift time of every primary electron in the gas volume enables 3D reconstruction of the particle tracks. For this purpose a Time-to- Digital converter must be placed in each pixel. A small-scale prototype of the GOSSIP chip has been developed in the 0.13 μm CMOS technology. The prototype includes a 16 by 16 pixel array where each pixel is equipped with a front-end circuit, threshold DAC, and a 4-bit TDC. The chip is available for testing in May 2007 and after initial tests it will be postprocessed to build a prototype detector. This paper describes the detector design goals, the design of the chip and the first experimental results

    Dynamic Remanent Vortices in Superfluid 3He-B

    Full text link
    We investigate the decay of vortices in a rotating cylindrical sample of 3He-B, after rotation has been stopped. With decreasing temperature vortex annihilation slows down as the damping in vortex motion, the mutual friction dissipation \alpha(T), decreases almost exponentially. Remanent vortices then survive for increasingly long periods, while they move towards annihilation in zero applied flow. After a waiting period \Delta t at zero flow, rotation is reapplied and the remnants evolve to rectilinear vortices. By counting these lines, we measure at temperatures above the transition to turbulence ~0.6T_c the number of remnants as a function of \alpha(T) and \Delta t. At temperatures below the transition to turbulence T \lesssim 0.55 T_c, remnants expanding in applied flow become unstable and generate in a turbulent burst the equilibrium number of vortices. Here we measure the onset temperature T_on of turbulence as a function of \Delta t, applied flow velocity, and length of sample L.Comment: Submitted to the proceedings of the Quantum Fluids and Solids Conference 2006 (to be published in Journal of Low Temperature Physics 2007) New data are adde
    • …
    corecore