72 research outputs found

    Can HCCH/HBNH Break B=N/C=C Bonds of Single-Wall BN/Carbon Nanotubes at Their Surface?

    Get PDF
    The iminoborane (HBNH) molecule, which prefers cycloaddition reactions, selectively breaks a B=N bond of smaller diameter single-wall BNNTs and expands a ring at their surface, either at the edges or at the middle of the tube. Density functional theory (DFT) is used to test whether its organic counterpart HCCH can do the same with BNNTs. HCCH-BNNT complexes are identified and transition states located for these combination reactions. Also explored are possible reactions of HBNH with SWNTs and HCCH with SWNTs. Data suggest that B=N (C=C) bond breaking, followed by ring expansion at the surface may be possible. Although [2+2] cycloaddition reaction seems possible for HBNH-BNNTs, a high energy barrier hinders the process for other combinations of host and guest. Introduction of substituents to HBNH/HCCH may allow a facile process. In most cases of HCCH-BNNTs, HBNH-SWNTs, and HCCH-SWNTs, transition states are identified and suggest an electron-rich guest might lower barrier heights to form stable complexes. Reaction with HCCH or HBNH at the bay-region of smaller diameter armchair tube is not favorable

    Europium Underneath Graphene on Ir(111): Intercalation Mechanism, Magnetism, and Band Structure

    Full text link
    The intercalation of Eu underneath Gr on Ir(111) is comprehensively investigated by microscopic, magnetic, and spectroscopic measurements, as well as by density functional theory. Depending on the coverage, the intercalated Eu atoms form either a (2×2)(2 \times 2) or a (3×3)(\sqrt{3} \times \sqrt{3})R30∘30^{\circ} superstructure with respect to Gr. We investigate the mechanisms of Eu penetration through a nominally closed Gr sheet and measure the electronic structures and magnetic properties of the two intercalation systems. Their electronic structures are rather similar. Compared to Gr on Ir(111), the Gr bands in both systems are essentially rigidly shifted to larger binding energies resulting in n-doping. The hybridization of the Ir surface state S1S_1 with Gr states is lifted, and the moire superperiodic potential is strongly reduced. In contrast, the magnetic behavior of the two intercalation systems differs substantially as found by X-ray magnetic circular dichroism. The (2×2)(2 \times 2) Eu structure displays plain paramagnetic behavior, whereas for the (3×3)(\sqrt{3} \times \sqrt{3})R30∘30^{\circ} structure the large zero-field susceptibility indicates ferromagnetic coupling, despite the absence of hysteresis at 10 K. For the latter structure, a considerable easy-plane magnetic anisotropy is observed and interpreted as shape anisotropy.Comment: 18 pages with 14 figures, including Supplemental Materia

    Collective orbital excitations in orbitally ordered YVO3 and HoVO3

    Get PDF
    We study orbital excitations in the optical absorption spectra of YVO3 and HoVO3. We focus on an orbital absorption band observed at 0.4 eV for polarization E parallel c. This feature is only observed in the intermediate, monoclinic phase. By comparison with the local crystal-field excitations in VOCl and with recent theoretical predictions for the crystal-field levels we show that this absorption band cannot be interpreted in terms of a local crystal-field excitation. We discuss a microscopic model which attributes this absorption band to the exchange of two orbitals on adjacent sites, i.e., to the direct excitation of two orbitons. This model is strongly supported by the observed dependence on polarization and temperature. Moreover, the calculated spectral weight is in good agreement with the experimental result.Comment: 12 pages, 9 figure

    Fractional and Integer Excitations in Quantum Antiferromagnetic Spin 1/2 Ladders

    Full text link
    Spectral densities are computed in unprecedented detail for quantum antiferromagnetic spin 1/2 two-leg ladders. These results were obtained due to a major methodical advance achieved by optimally chosen unitary transformations. The approach is based on dressed integer excitations. Considerable weight is found at high energies in the two-particle sector. Precursors of fractional spinon physics occur implying that there is no necessity to resort to fractional excitations in order to describe features at higher energies.Comment: 6 pages, 4 figures included, minor text changes, improved figure

    Observation of two-magnon bound states in the two-leg ladders of (Ca,La)14Cu24O41

    Full text link
    Phonon-assisted 2-magnon absorption is studied at T=4 K in the spin-1/2 two-leg ladders of Ca_14-x La_x Cu_24 O_41 (x=5 and 4) for polarization of the electrical field parallel to the legs and the rungs, respectively. Two peaks at about 2140 and 2800 1/cm reflect van-Hove singularities in the density of states of the strongly dispersing 2-magnon singlet bound state, and a broad peak at about 4000 1/cm is identified with the 2-magnon continuum. Two different theoretical approaches (Jordan-Wigner fermions and perturbation theory) describe the data very well for J_parallel = 1050 - 1100 1/cm and J_parallel / J_perp = 1 - 1.1. A striking similarity of the high-energy continuum absorption of the ladders and of the undoped high T_c cuprates is observed.Comment: 4 pages, 3 figures, Revte

    The Structure of Operators in Effective Particle-Conserving Models

    Full text link
    For many-particle systems defined on lattices we investigate the global structure of effective Hamiltonians and observables obtained by means of a suitable basis transformation. We study transformations which lead to effective Hamiltonians conserving the number of excitations. The same transformation must be used to obtain effective observables. The analysis of the structure shows that effective operators give rise to a simple and intuitive perspective on the initial problem. The systematic calculation of n-particle irreducible quantities becomes possible constituting a significant progress. Details how to implement the approach perturbatively for a large class of systems are presented.Comment: 12 pages, 1 figure, accepted by J. Phys. A: Math. Ge

    Optical study of orbital excitations in transition-metal oxides

    Get PDF
    The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. To this end, we have studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10, ranging from early to late transition-metal ions, from t_2g to e_g systems, and including systems in which the exchange coupling is predominantly three-dimensional, one-dimensional or zero-dimensional. With the exception of LaMnO3, we find orbital excitations in all compounds. We discuss the competition between orbital fluctuations (for dominant exchange coupling) and crystal-field splitting (for dominant coupling to the lattice). Comparison of our experimental results with configuration-interaction cluster calculations in general yield good agreement, demonstrating that the coupling to the lattice is important for a quantitative description of the orbital excitations in these compounds. However, detailed theoretical predictions for the contribution of collective orbital modes to the optical conductivity (e.g., the line shape or the polarization dependence) are required to decide on a possible contribution of orbital fluctuations at low energies, in particular in case of the orbital excitations at about 0.25 eV in RTiO3. Further calculations are called for which take into account the exchange interactions between the orbitals and the coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved calculation of orbital excitation energies in TiOCl, figure 16 improved, references updated, 33 pages, 20 figure

    Fingerprints of Kitaev physics in the magnetic excitations of honeycomb iridates

    Get PDF
    In the quest for realizations of quantum spin liquids, the exploration of Kitaev materials - spin-orbit entangled Mott insulators with strong bond-directional exchanges - has taken center stage. However, in these materials the local spin-orbital j=1/2 moments typically show long-range magnetic order at low temperature, thus defying the formation of a spin-liquid ground state. Using resonant inelastic x-ray scattering (RIXS), we here report on a proximate spin liquid regime with clear fingerprints of Kitaev physics in the magnetic excitations of the honeycomb iridates alpha-Li2IrO3 and Na2IrO3. We observe a broad continuum of magnetic excitations that persists up to at least 300K, more than an order of magnitude larger than the magnetic ordering temperatures. We prove the magnetic character of this continuum by an analysis of the resonance behavior. RIXS measurements of the dynamical structure factor for energies within the continuum show that dynamical spin-spin correlations are restricted to nearest neighbors. Notably, these spectroscopic observations are also present in the magnetically ordered state for excitation energies above the conventional magnon excitations. Phenomenologically, our data agree with inelastic neutron scattering results on the related honeycomb compound RuCl3, establishing a common ground for a proximate Kitaev spin-liquid regime in these materials.Comment: 13 pages, 14 figure

    Observation of out-of-phase bilayer plasmons in YBa_2Cu_3O_7-delta

    Get PDF
    The temperature dependence of the c-axis optical conductivity \sigma(\omega) of optimally and overdoped YBa_2Cu_3O_x (x=6.93 and 7) is reported in the far- (FIR) and mid-infrared (MIR) range. Below T_c we observe a transfer of spectral weight from the FIR not only to the condensate at \omega = 0, but also to a new peak in the MIR. This peak is naturally explained as a transverse out-of-phase bilayer plasmon by a model for \sigma(\omega) which takes the layered crystal structure into account. With decreasing doping the plasmon shifts to lower frequencies and can be identified with the surprising and so far not understood FIR feature reported in underdoped bilayer cuprates.Comment: 7 pages, 3 eps figures, Revtex, epsfi

    Signatures of polaronic excitations in quasi-one-dimensional LaTiO3.41_{3.41}

    Full text link
    The optical properties of quasi-one-dimensional metallic LaTiO3.41_{3.41} are studied for the polarization along the aa and bb axes. With decreasing temperature modes appear along both directions suggestive for a phase transition. The broadness of these modes along the conducting axis might be due to the coupling of the phonons to low-energy electronic excitations across an energy gap. We observe a pronounced midinfrared band with a temperature dependence consistent with (interacting) polaron models. The polaronic picture is corroborated by the presence of strong electron-phonon coupling and the temperature dependence of the dc conductivity.Comment: 5 pages, 5 figure
    • …
    corecore