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Abstract. We study orbital excitations in the optical absorption spectra of
YVO3 and HoVO3. We focus on an orbital absorption band observed at 0.4 eV for
polarization E ‖ c. This feature is only observed in the intermediate, monoclinic
phase. By comparison with the local crystal-field (CF) excitations in VOCl and
with recent theoretical predictions for the CF levels we show that this absorption
band cannot be interpreted in terms of a local CF excitation. We discuss a
microscopic model which attributes this absorption band to the exchange of
two orbitals on adjacent sites, i.e. to the direct excitation of two orbitons. This
model is strongly supported by the observed dependence on polarization and
temperature. Moreover, the calculated spectral weight is in good agreement with
the experimental result.
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1. Introduction

In strongly correlated transition-metal oxides, orbital interactions play a key role in many
intriguing phenomena such as the colossal magnetoresistance or the effective reduction of
dimensionality [1]–[4]. Orbitals on different sites interact with each other [5, 6] via the collective
Jahn–Teller effect, i.e. the coupling to the lattice, and via exchange interactions, which are
governed by the antisymmetrization of the total wavefunction including both the orbital and
the spin part. These interactions can result in coupled long-range spin and orbital order. If the
coupling to the lattice is dominant, the excitations are well described by ‘local’ crystal-field
(CF) excitations [7]–[9], where ‘local’ means that the excitation can be treated as a change
of the orbital occupation on a single site, i.e. the dispersion is negligible. In the opposite
case of dominant exchange interactions, one expects novel collective elementary excitations,
namely orbital waves (orbitons) with a significant dispersion [10], reflecting the propagation
of the excited state. Thus orbitons are analogous to spin waves—propagating spin flips—in a
magnetically ordered state. Orbitons are expected to reveal the fundamental orbital interactions
responsible for the interesting physical properties. In the quest for the experimental observation
of orbitons, the central experimental task is to demonstrate that the orbital exchange interactions
are essential for the elementary excitations. If this is the case, the excitations cannot be described
in terms of single-site physics, and we will use the term ‘orbiton’.

The first claim for the observation of orbitons was based on Raman data of LaMnO3 [11],
but the relevant features have later been explained in terms of multi-phonons [12]. In fact, in the
manganites the orbital degree of freedom is connected with eg electrons, for which the coupling
to the lattice is strong in an octahedral environment. The vanadates RVO3 with two electrons
occupying t2g orbitals may be considered as more promising candidates [13]–[15]. Recently,
the observation of orbitons in Raman data of RVO3 (R = Y, La, Nd) has been claimed at 43
and 62 meV by Miyasaka et al [16, 17] and at 45 and 84 meV by Sugai and Hirota [18], but
the proposed orbitons are hard to discriminate from (multi-)phonons and magnons, and the
assignment is controversial [16]–[18]. In YTiO3 and LaTiO3, a Raman peak at 0.25 eV has
been interpreted in terms of a two-orbiton excitation, based on its dependence on temperature,
polarization, and on the frequency of the incoming photons [19, 20]. However, it cannot be fully
excluded that this feature corresponds to a local CF excitation [9]. Thus, an experimental proof
for the existence of orbitons is still lacking.
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Figure 1. Orbital and spin ordering patterns in YVO3 for (a) TS < 77 K and
(b) TS < T < TOO = 200 K [15], [21]–[32]. The xy orbital is occupied by one
electron on each site (not shown). The occupation of xz and yz orbitals is
C-type below TS and G-type above (see main text for more details). SO is lost at
TN = 116 K. The coordinates of the Pbnm and P21/b crystal systems are given
in the upper left corner of each figure.

Here, we report on the observation of orbital excitations in the optical conductivity σ(ω)

of orbitally ordered YVO3 and HoVO3. We focus on an absorption feature observed for
E ‖ c at about 0.4 eV, well above the range of phonons and magnons and well below the
Mott–Hubbard gap. A comparison with the local CF excitations in the 3d2 system VOCl and
with recent theoretical results [15, 21] for the CF levels shows that this feature is hard to
reconcile with a local CF scenario, in particular, as far as the energy, the polarization and
temperature dependence are concerned. We discuss the microscopic exchange process and
conclude that the feature at 0.4 eV reflects the exchange of two orbitals on neighboring sites, i.e.
the direct excitation of two orbitons.

The vanadates RVO3 with R = Y and Ho exhibit an orthorhombic crystal structure (Pbnm)
at room temperature [22, 23, 33]. The undoped compounds represent Mott–Hubbard insulators
with two localized electrons in the 3d shell of each V3+ ion. A crystal field of predominantly
octahedral symmetry yields a splitting of the 3d states into a lower-lying, triply degenerate
t2g level and a doubly degenerate eg level. A detailed analysis of the structure reveals that the
degeneracy of these levels is fully lifted by an orthorhombic distortion of the VO6 octahedra
(D2h symmetry) [22, 23], giving rise to a splitting of the t2g manifold into xy, xz and yz
orbitals. In YVO3, a low-temperature orthorhombic phase (Pbnm) with G-type spin order (SO)
and C-type orbital order (OO) was found below TS = 77 K [15], [21]–[32], i.e. the xy orbital
is occupied at each V site, whereas the occupation of xz and yz orbitals alternates within the
ab-plane (see figure 1). At TS = 77 K, a first-order structural phase transition to an intermediate,
monoclinic phase with P21/b symmetry has been observed. This monoclinic phase shows
two different vanadium sites, V(1) and V(2), which alternate along the c-axis. Therefore,
the mirror symmetry perpendicular to the ab-plane is broken in the intermediate phase. The
spin ordering pattern changes from G-type below TS to C-type above. Long-range magnetic
order is lost at TN = 116 K. The structural phase transition from the monoclinic phase to the
orthorhombic room-temperature phase is observed at TOO ≈ 200 K, which has been interpreted
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as the long-range orbital ordering temperature [22]. However, synchrotron x-ray diffraction data
give evidence for the presence of OO up to about 300 K [28]. For the intermediate monoclinic
phase, it has been discussed controversially whether the physics has to be described in terms
of ‘classical’ OO or quantum orbital fluctuations: it has been proposed that the intermediate
phase of YVO3 represents the first realization of a one-dimensional orbital liquid and of an
orbital Peierls phase with V(1)–V(2) orbital dimers [14], [34]–[37]. This has been challenged
by LDA+U and LDA+DMFT studies [15, 31], which for YVO3 find OO and that at least below
300 K orbital quantum fluctuations are suppressed in YVO3 by a sizeable ligand-field splitting.
The orbital ordering pattern in the monoclinic phase has been reported as G-type based on,
e.g. resonant x-ray diffraction [28], an analysis of the V–O bond lengths [24], or LDA+U
calculations [31]. In comparison to C-type OO, the orbitals of every second layer along c
are shifted along x , thus xz and yz alternate along x , y and z for G-type OO (see figure 1).
According to Hartree–Fock calculations, the size of GdFeO3-type distortions is decisive for
the choice between G-type and C-type OO patterns [30]. A recent LDA+DMFT study by
De Raychaudhury et al finds that the OO pattern is intermediate between C-type and G-type
due to the GdFeO3 distortions, almost C-type in the intermediate phase [15]. However, Noguchi
et al [28] claim that their synchrotron x-ray diffraction data are fitted best by G-type OO, but
that the partial occupation of other orbitals is possible. The compound HoVO3 behaves very
similar to YVO3 with slightly different phase-transition temperatures of TOO ≈ 188 K, TN =

114 K and TS ≈ 40 K [33, 38]. A detailed structural study of HoVO3 using both neutron and
synchrotron x-ray scattering concludes on the basis of the V–O bond lengths that the
intermediate monoclinic phase exhibits G-type OO with significant orbital fluctuations,
but that these fluctuations are not strong enough to establish an orbitally dimerized
state [38].

The paper is organized as follows. In section 2, we address the crystal growth and
characterization as well as the optical measurements. The optical conductivity of YVO3 is
discussed in section 3. We first establish the orbital character of the excitations observed
between 0.2 and 0.8 eV. In a second step, we argue that the peak observed at 0.4 eV for E ‖ c
cannot be interpreted as a local CF excitation. Then, we propose that the observed feature can
be understood as a two-orbiton absorption and discuss its energy, polarization and temperature
dependence. We derive an effective Hamiltonian for the orbital exchange process and calculate
the spectral weight of the considered two-orbiton excitation. In order to corroborate our
interpretation, we present data of HoVO3. Finally, we address the peak observed at 0.55 eV
for E ‖ a. The results are summarized in section 4. The derivation of the effective Hamiltonian
is described in the appendix, discussing the remarkable difference between the standard unitary
transformation and a continuous unitary transformation.

2. Experiment

Single crystals of RVO3 with R = Y and Ho have been grown by the traveling-solvent floating-
zone method [22]. The purity, stoichiometry and single-phase structure of the crystals were
checked by x-ray diffraction and thermogravimetry. Typical crystal dimensions are a few
millimeters along all three crystallographic axes. The optical conductivity σ(ω) of YVO3 was
determined by measuring both the transmittance and the reflectance [39] between 0.06 and
1.9 eV using a Fourier spectrometer. The measurements have been performed using linearly
polarized light with the electric field parallel to the orthorhombic axes, i.e. E ‖ a, b and c
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Figure 2. Optical conductivity of YVO3 in the low-temperature orthorhombic
phase at T = 10 K for E ‖ a, b and c (top panel) and −ln(T(ω)) of VOCl at
20 K for E ‖ a and b (in Pmmn; bottom panel). Three different orbital excitations
within the t2g subshell are sketched in the lower panel.

(see top panel of figure 2). For convenience, we use the same set of axes at all temperatures, i.e.
we neglect the monoclinic distortion of the structure. This is justified because the monoclinic
angle α = 89.98◦ is very close to 90◦ [22]. The reflectance was measured on samples with
a thickness of d > 2 mm in order to avoid backside reflections. The transmittance data were
collected on a series of crystals with different thickness (100 µm < d < 500 µm), which were
polished on both the sides.

Single crystals of VOCl have been grown by the chemical-vapor transport technique. The
purity of the crystals was checked by x-ray powder diffraction. Typical crystal dimensions are
a few mm2 in the ab-plane and 10–100 µm along the c-axis. In the case of VOCl and HoVO3,
we have measured the transmittance only. The transmittance T(ω) is a very sensitive probe for
the determination of weakly infrared-active excitations below the gap of these Mott–Hubbard
insulators, where the reflectance is nearly constant and featureless. Therefore, the absorption
coefficient α(ω) ∝ −ln(T(ω))/d can be used equivalently to σ(ω) for the determination of weak
orbital excitations [39].

3. Results and discussion

The top panel of figure 2 shows the optical conductivity σ(ω) of YVO3 at 10 K in the transparent
window of the Mott–Hubbard insulator, i.e. above the phonon range and below the electronic
interband excitations. The lowest electronic transition corresponds to an excitation across
the Mott–Hubbard gap, i.e. the transfer of one electron from a 3d2 V3+ site to another one,

New Journal of Physics 10 (2008) 053027 (http://www.njp.org/)

http://www.njp.org/


6

0.002 0.003 0.004 0.005 

0 

5 

10 

15 

-10 

-5 

0 

5 

10 

15 

200 300 400 500 
10 1 

10 2 

10 3 

10 4 

10 5 

10 6 

10 7 

1/T (1 K–1) 

ln
 

ln( /T
 1.5 ) 

YVO 3 

(a) (b ) 

YVO 3 

 Heating
 Cooling

T (K) 

( 
cm

) 

Figure 3. (a) Resistivity ρ of YVO3 from T = 200 K up to 570 K. (b) ln(ρ)

versus 1/T (left axis) and ln(ρ/T 3/2) versus 1/T (right axis). Dashed lines show
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→ 3d1 3d3. In the optical conductivity, the lowest electronic excitation is observed at

1.8 eV [27, 40], and a value of 1.6 eV has been reported for the Mott–Hubbard gap based on
a combination of ellipsometry and LSDA + U calculations [27]. This agrees with the steep
increase of σ(ω) in our data (see top panel of figure 2). However, the transmittance reveals
that the very onset of excitations across the Mott–Hubbard gap is somewhat lower. The
precise onset is obscured by the superposition of spin-forbidden orbital excitations between
about 1.0 and 1.5 eV (see below). Charge-transfer excitations, involving the transfer of an
electron between V and O ions (d2

→ d3 L̄), are located above about 4 eV [27]. Absorption
features below the Mott–Hubbard gap have to be attributed to phonons, magnons, excitons,
orbital excitations or to localized carriers trapped by impurities. We exclude the latter for a
number of reasons: (i) the spectra of different samples of YVO3 are identical, (ii) the spectra
of YVO3 and HoVO3 are very similar (see below), (iii) the polarization and temperature
dependence (see below), and (iv) the dc resistivity, which is very large, 3 × 106 �cm at 200 K.
In earlier experiments, an activation energy of 1act = 0.25 eV was obtained for polycrystalline
samples from resistivity data for 180 K < T < 300 K [41], corresponding to an optical gap of
21act = 0.5 eV. In figure 3(a), we plot ρ(T ) of our single crystals between 200 and 570 K. Note
that ρ(T ) is about an order of magnitude larger than reported in [41]. The Arrhenius plot in
figure 3(b) suggests 21act ≈ 0.8 eV, but the data are not very well described by simple activated
behavior. The data are best described by the non-adiabatic small-polaron model [42], predicting
ρ = CT 3/2exp(1act/(kBT )) (see figure 3(b)). Within this model we obtain 21act = 0.78 eV, in
agreement with both the estimate based on simple activated behavior and in particular with the
onset of absorption observed in σ(ω) (see top panel of figure 2). This value is significantly
larger than reported in [41], demonstrating the high quality of our samples. Remarkably, DFT–
PIRG calculations [32] predict an indirect gap at 0.7 eV, in excellent agreement with our data.
Altogether, we have strong evidence that all absorption features observed in σ(ω) below 0.8 eV
arise from phonons, magnons, excitons or orbital excitations.

The optical conductivity of YVO3 below 0.9 eV is given in figure 4. The absorption due to
phonons gives rise to the steep increase of σ(ω) below about 80 meV, in agreement with the data
reported in [27]. Thus, weak two-phonon features can be observed up to about 160 meV, whereas
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Figure 4. Temperature dependence of σ(ω) of YVO3 in the mid-infrared range
for E ‖ a (top panel), E ‖ b (middle), and E ‖ c (bottom). The features at 0.4 eV
for E ‖ c and 0.55 eV for E ‖ a constitute our main experimental result.

three-phonon absorption is expected to be still much weaker. A contribution to σ(ω) from
spin waves may arise in the form of two-magnon-plus-phonon absorption [43, 44]. However,
in YVO3 the spin-wave dispersion does not exceed 40 meV [34]. Thus, a possible two-magnon-
plus-phonon contribution is expected to peak below 0.2 eV and clearly is not related to the
features observed above 0.2 eV.

As far as excitons are concerned, we have to distinguish between strongly and weakly
bound excitons. In a Mott–Hubbard insulator, an exciton is a bound state of an electron in
the upper Hubbard band (i.e. a double occupancy) and a hole in the lower Hubbard band (an
‘empty site’). In the case of a weakly bound exciton, the electron and the hole occupy distinct
sites, e.g. nearest-neighbor sites. The binding may result from the nearest-neighbor Coulomb
attraction. Recently, an excitonic resonance was reported [45] in the orbitally ordered 3d1

Mott–Hubbard insulator YTiO3 at 1.95 eV. We consider it as unrealistic to assume a binding
energy large enough to pull such a weakly bound exciton far below 1 eV in YVO3. Moreover,
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the spectral weight of the exciton in YTiO3 is more than two orders of magnitude larger than
the spectral weight between 0.1 and 0.7 eV in YVO3.

3.1. Orbital excitations

The physics is different for a strongly bound exciton, in which case the electron and the hole
share the 3d shell of the same site. This actually corresponds to an orbital or d–d excitation
(or to a spin excitation, which has been ruled out above). These excitations may occur far
below the gap because the binding energy and the gap are both of the order of the on-site
Coulomb repulsion U . In other words, double occupancy is omitted if the electron and the
hole share the same site, thus one does not have to pay the energy U . Orbital excitations in
the form of local CF excitations are a common feature in many transition-metal compounds in
the considered frequency range [7]–[9]. The central question to us is whether the observed
orbital excitations are such local crystal-field excitations or propagating orbitons, reflecting
the importance of orbital exchange interactions. The orbiton dispersion for orbitally ordered
vanadates has been investigated theoretically [13]. Predictions for Raman scattering [13, 16, 17]
and inelastic neutron scattering [13] have been discussed, but contributions to σ(ω) for the case
of dominant exchange interactions have not been considered thus far. Moreover, a quantitative
description requires that both the exchange interactions and the coupling to the lattice are treated
on the same footing [46, 47], but up to now such calculations have not been reported for the
vanadates. Therefore, we first compare our results with the expectations for local CF excitations
of 3d2 V3+ ions. We use VOCl as a typical example for the absorption spectrum of V3+ ions
in a predominantly octahedral, but distorted environment (see bottom panel of figure 2). In the
sister compound TiOCl, the orbital excitations are very well described in terms of local CF
excitations [9, 48].

YVO3 shows inversion symmetry on the V sites, thus local CF excitations are not
infrared-active due to the parity selection rule. However, they become weakly allowed by the
simultaneous excitation of a symmetry-breaking phonon [7]–[9]. In VOCl (Pmmn) there is no
inversion symmetry on the V site [49] and the CF excitations are weakly allowed without the
additional excitation of a phonon.8

For the sake of simplicity, we start from an undistorted octahedral crystal field, the effect
of a lower symmetry will be discussed below. The ground state of a d2 system in an octahedral
field is the nine-fold degenerate 3T1 level with total spin S = 1, in which two electrons with
parallel spins occupy the t2g level, t↑↑

2g [7]. The splitting between t2g and eg levels typically
amounts to & 2 eV for O2− ligands [7, 8]. For VOCl, this splitting is reduced due to the smaller
ligand strength of the Cl− ions and can be identified with the feature observed around 1.7 eV
(see bottom panel of figure 2). For YVO3, it is reasonable to assume that the t2g–eg splitting is
larger than the Mott–Hubbard gap. In the following, we focus on the excitations within the t2g

shell, which are located at lower energies.
In an octahedral field, the spin–flip excitation from the 3T1 ground state with S = 1

to the five-fold degenerate S = 0 state (1T2, 1 E ; t↑↓

2g ) occurs at 2JH. The Hund exchange
JH ≈ 0.7 eV [51] is hardly screened in a solid, therefore this excitation is observed at very
similar energies in different V compounds [52]–[54], irrespective of the crystal structure.
Typical examples are the weak, sharp features observed between 1.1 and 1.3 eV in VOCl

8 Raman data of the phonons in VOCl indicate a lower local symmetry on the V site [50]. However, in our context
this affects just details of the spectrum, i.e. the number of spin-forbidden excitations.
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Figure 5. Spectral weight and line shape of the peak at 0.4 eV for E ‖ c in YVO3.
According to our microscopic model, the two-orbiton excitation is forbidden
below TS = 77 K. Therefore, the data for 4 K have been subtracted for each
temperature as an estimate for the background of, e.g. multi-phonon absorption.
The inset depicts the plasma frequency ωp (see equation (8)) for ωlo = 0.20 eV
and ωhi = 0.68 eV.

(see bottom panel of figure 2). These spin–flip excitations are very weak due to the spin-
selection rule, they become weakly allowed by spin–orbit coupling or by the simultaneous
excitation of a magnon [7]. Such spin-flip bands often are very sharp because the orbital occupa-
tion stays the same, thus the coupling to the lattice is only weak (the large width of spin-allowed
excitations is attributed to vibronic Franck–Condon sidebands). Also in YVO3, sharp features
are observed between 1.1 and 1.4 eV which can be attributed to spin-forbidden excitations.
The oscillator strength is clearly enhanced compared with VOCl. Presumably, this is due to the
overlap with the onset of excitations across the Mott–Hubbard gap. Mixing the two kinds of
excitations will transfer some weight to the orbital bands, a process called ‘intensity stealing’.

In a local CF scenario, all features observed significantly below 1 eV have to be interpreted
as spin–conserving transitions within the t2g shell, i.e. both the ground state and the excited
state show S = 1. Both in YVO3 and in VOCl, the symmetry on the V sites is lower than
tetragonal, thus the t2g level is split into three distinct orbitals. For two electrons with parallel
spins, there are three distinct energy levels, each showing three-fold spin degeneracy. In strongly
distorted VOCl, we observe the corresponding excitations at 0.3–0.4 eV (see figure 2). For
YVO3, one expects lower excitation energies because the distortions away from an octahedral
environment are smaller than in VOCl. Indeed, recent first-principles [21] and LDA+DMFT
calculations [15] predict intra-t2g excitations in YVO3 in the range of 0.10–0.20 eV and
0.06–0.24 eV, respectively. Our data of σ(ω) of YVO3 show an absorption band centered around
0.20–0.25 eV at all temperatures and for all polarization directions (see figure 4), in agreement
with these expectations.

Our main experimental result is the observation of the two remaining features which cannot
be explained within a local CF scenario, namely the peaks at about 0.4 eV for E ‖ c and at
0.55 eV for E ‖ a (see figures 4 and 5). As follows from the discussion above, these features are
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hard to reconcile with a local CF scenario: the energy is too low for a spin–flip transition and
too high for a spin-conserving intra-t2g transition. Moreover, the strong polarization dependence
of both peaks is entirely unexpected for a phonon-assisted CF excitation. Since the phonon
polarization is arbitrary, one does not expect strict polarization selection rules [9]. Even in VOCl,
where CF excitations are directly allowed, the absorption is very similar for the two polarization
directions. Finally, also the pronounced temperature dependence is unexpected for a local CF
excitation. For E ‖ c, the spectral weight around 0.4 eV is independent of temperature for
T > TOO = 200 K, increases with decreasing temperature below TOO, and abruptly disappears
at TS = 77 K (see inset of figure 5). For a local CF excitation, both the spectral weight and
the energy in principle may change across a structural phase transition. However, LDA+DMFT
calculations [15] predict that the intra-t2g excitation energies change by less than 40 meV across
TS, thus the abrupt change of σ(ω) at TS cannot be explained.

3.2. Orbitons

Thus far, we have neglected the exchange interactions between orbitals on neighboring sites,
which change the character of the excitations from ‘local’ CF excitations to propagating
orbitons. Here, we consider two different processes for the excitation of orbitons [13]. Firstly,
the excitation process itself may be based on the exchange of orbitals between adjacent
sites (see below). Secondly, an orbiton may be excited locally by flipping an orbital on a
single site, e.g. from xz to yz, with subsequent propagation of the orbital flip. In the latter
case, the excitation process is as discussed above in the local CF limit, i.e. it requires the
simultaneous excitation of a symmetry-breaking phonon to obtain a finite dipole moment for
the local orbital flip. The difference arises from the propagation of the orbital flip, which is
similar to a spin flip which translates into a spin wave or magnon in a system with long-
range magnetic order. For such a propagating orbital flip, we have to take into account the
dispersion. Due to momentum conservation, σ(ω) is sensitive to excitations with 1ktot = 0,
where 1ktot = kphonon + korbiton. Since the symmetry-breaking phonon may have any momentum,
σ(ω) reflects orbiton contributions from the entire Brillouin zone. However, without more
detailed theoretical predictions about the line shape or width, this one-orbiton-plus-phonon
peak cannot be distinguished from the broad vibronic Franck–Condon peak expected in the
local CF limit. Thus, we can attribute the absorption feature around 0.2 eV to a single orbital
flip, but we cannot decide whether this flip is only local or propagates due to orbital exchange
interactions. In principle, the dispersion can be significant if the exchange coupling is large
and the CF splitting is small [13, 16, 17, 46, 47]. In comparison to eg systems, the exchange
coupling is smaller in t2g systems, but this may be overcompensated by a reduced CF splitting.
As mentioned in the introduction, it has been discussed controversially whether the exchange
interactions or the CF splitting dominate in YVO3 [14, 15, 31], [34]–[37].

In the other case mentioned above, the excitation process is based on the exchange of
orbitals between adjacent sites [19]. Here, we primarily focus on the peak for E ‖ c at 0.4 eV.
Our interpretation of this feature as a two-orbiton excitation naturally explains its energy,
the polarization dependence, and the pronounced temperature dependence, i.e. it resolves
the three issues mentioned above. For the exchange along the c axis, we consider only the
dominant processes and neglect the rotation and tilt distortions of the octahedra. In this case,
hopping preserves the type of orbital, i.e. the only finite hopping processes are xz(α) ↔ xz(β)

and yz(α) ↔ yz(β), where α and β denote neighboring V(1) and V(2) sites, respectively
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Figure 6. Top: Sketch of the local energy levels and of the hopping processes
between neighboring V sites for the two-orbiton excitation in the monoclinic
phase of RVO3 with an electric field E applied parallel to the c-axis. Only xz and
yz orbitals are considered for the exchange because the lower-lying xy orbital is
always occupied by one electron. The spin is omitted since we consider fully
polarized electrons. See text for more details. Bottom: For two electrons with
parallel spins, there are six possibilities to occupy the xz and yz orbitals on sites
V(1) and V(2): (a) orbital ground state; (b) two-orbiton excited state; (c) and (d)
one-orbiton excited states; (i) and (ii) states in the upper Hubbard band with a
doubly occupied V site.

(see figure 6). Note that hopping in the z-direction is zero for the xy orbital, which is the lowest
orbital on all sites and thus occupied by one electron. Following the analysis of synchrotron
x-ray data by Noguchi et al [28], we consider G-type OO for the intermediate phase (see
figure 1), i.e. the second electron per site occupies xz on V(1) and yz on V(2) in the ground
state. For this second electron per site, we consider the fermionic Hamiltonian HF

HF = HF0 + t (c†
α1cβ0 + c†

α0cβ1 + h.c.), (1a)

HF0 =

∑
τ∈{α,β}

(
(ετ + 1τ )c

†
τ1cτ1 + ετ c†

τ0cτ0 + U ′c†
τ1cτ1c†

τ0cτ0

)
, (1b)

where t denotes the hopping matrix element, c†
τ i (cτ i ) creates (annihilates) an electron in orbital

i = 0 or 1 on site τ ∈ {α, β}, U ′
= U − 3JH denotes the Coulomb repulsion for two electrons

on the same site but in different orbitals, and the energies ετ and 1τ are illustrated in figure 6.
No spin appears since we consider parallel spins due to Hund’s coupling to the electron in the
xy orbital. In the orbital ground state, the lower levels (denoted 0) are occupied by one electron,
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the upper levels (denoted 1) are empty. The creation of an orbiton at site τ corresponds to the
excitation of an electron from 0 to 1 at τ , which requires the energy 1τ . We introduce bosonic
orbiton creation operators b†

τ with

b†
τ := c†

τ1cτ0. (2)

The annihilation operators are the Hermitean conjugate ones. Note that the orbitons are hardcore
bosons since at maximum there can be only one at each site.

In the second order in t the orbital ground state of HF (state (a) in figure 6) is linked via
the intermediate states (i) or (ii) to state (b) with two excited orbitons, one at site α and one
at site β. Note that states (c) and (d) corresponding to the excitation of a single orbiton cannot
be reached from the ground state in the considered symmetry9. In contrast, the two-orbiton
excitation can account for the observed energy, polarization and temperature dependence. For
the energy of a two-orbiton excitation, one roughly expects twice the energy of a one-orbiton
excitation, neglecting orbiton–orbiton interactions and kinetic effects. As discussed above,
single orbital excitations are observed around 0.2 eV, hence the energy of the feature at 0.4 eV
is well described by a two-orbiton interpretation. Due to Hund’s coupling with the electron in
the low-lying xy orbital, this two-orbiton excitation requires parallel alignment of the spins on
the considered bond, which in YVO3 is only present in the intermediate phase and only along the
c-axis, in agreement with the observed polarization and temperature dependence. Moreover, the
two-orbiton excitation requires hopping from, e.g. xz on V(1) to xz on V(2), thus the spectral
weight becomes zero if both orbitals are occupied in the ground state. This is the case for the
C-type OO observed below TS, explaining the abrupt drop of the intensity at TS (see figure 5).
For the intermediate phase, we have assumed pure G-type OO for simplicity, neglecting
admixtures of C-type (see discussion in the introduction). Note that deviations from G-type
OO as claimed recently on the basis of LDA+DMFT calculations [15] will only affect the
precise value of the spectral weight. In order to understand the temperature dependence at higher
temperatures, we now address the dipole-selection rule and calculate the spectral weight of this
two-orbiton excitation.

In analogy to the derivation of Heisenberg exchange, we derive an effective Hamiltonian
Horb in terms of orbiton creation and annihilation operators for the mixture of states (a) and (b)

Horb = J (b†
αb†

β + h.c.) + const. (3)

In this effective description no virtual double occupancies appear. To do so, we assume that the
on-site Coulomb interaction is the largest energy

U ′ > |εα + 1α − εβ |, (4a)

U ′ > |εβ + 1β − εα|. (4b)

This assumption is certainly met in YVO3, where U ′
= U − 3JH ≈ 2 eV and all other energies

are of the order of fractions of 1 eV. We find (see the appendix)

J =
2t2U ′

(U ′)2 − (δ − ecE)2
, (5)

9 From the ground state (a), the one-orbiton states (c) and (d) can only be reached if the off-diagonal hopping
xz(α) ↔ yz(β) is finite, i.e. it requires deviations from the ideal perovskite structure.Therefore, the matrix element
is significantly smaller than for the two–orbiton excitation.
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where e is the elementary charge, c is the distance between the two sites, E denotes an electric
field applied parallel to the bond along the c-axis, and

δ = ε0
β − ε0

α +
1β − 1α

2
= (ε0

β + ε1
β − ε0

α − ε1
α)/2, (6)

where ε1
τ = ε0

τ + 1τ (see figure 6). The two-orbiton excitation is dipole allowed if ∂ Horb/∂ E 6= 0.
We find

∂ J/∂ E ≈ −
4t2

(U ′)3
δ ec. (7)

In the denominator, we neglected δ because it is much smaller than U ′.
In the presence of a mirror plane between the two V sites, i.e. ε0

β = ε0
α and 1β = 1α,

the two-orbiton excitation does not carry a dipole moment and does not contribute to σ(ω).
However, such a mirror plane is present only below TS = 77 K and above TOO = 200 K, but
the symmetry is broken in the intermediate phase with two distinct V sites. The situation is
similar to the case of two-magnon absorption discussed by Lorenzana and Sawatzky [43, 44].
They demonstrated that two-magnon absorption becomes weakly infrared active if the mirror
symmetry on the bond is broken by the simultaneous excitation of a phonon. In the present
case, the symmetry is already broken without a phonon. We conclude that the excitation of two
orbitons is directly infrared active for E ‖ c in the intermediate, monoclinic phase of YVO3.

The absolute value of ∂ J/∂ E depends on the CF levels via δ. From the first-principles
study by Solovyev [21] and the LDA+DMFT calculation by De Raychaudhury et al [15]
we obtain δ = 20 and 33.5 meV, respectively. However, each individual level εi

τ certainly is
known only with an accuracy of 50 meV, thus the error of δ is about 100 meV. For U ′

= 2 eV,
δ = 20–100 meV, and t = 100–150 meV [15] we obtain ∂ J/∂ E = 0.1–1.1 × (10−3 ec). The
spectral weight usually is expressed in terms of the plasma frequency ωp,∫ ωhi

ωlo

σ1(ω) dω =
πε0

2
ω2

p, (8)

where the frequency range of interest is defined by ωlo and ωhi, and ε0 denotes the dielectric
constant of vacuum. The spectral weight of the two-orbiton excitation at h̄ω2o = 0.4 eV
is given by

ω2
p =

2ω2o

h̄ε0V
|∂ J/∂ E |

2, (9)

where V = 56 Å3 is the volume per site. Finally, we obtain h̄ωp = 0.6−6.8 meV. This has
to be compared with the experimental result for the spectral weight, for which we choose
h̄ωlo = 0.20 eV and h̄ωhi = 0.68 eV. In order to separate the two-orbiton contribution from
a background of, e.g. multi-phonon absorption, the integration for each temperature T is
performed over σ1(T, ω)− σ1(4K, ω), since the two-orbiton excitation is not dipole allowed
at 4 K (see figure 5). At 80 K this yields h̄ω

exp
p = 16 meV, about a factor of 2–26 larger than

the calculated result. We emphasize that the quantitative prediction of the spectral weight is a
challenging task. Note that the theoretical estimate of ωp of the phonon-assisted two-magnon
absorption in the cuprates on the basis of a similar perturbation expansion was off by a factor of
4–7 [43, 55]. Therefore, we consider this result as a clear support for our interpretation.

The temperature dependence of ωp is plotted in the inset of figure 5. Upon warming above
TOO = 200 K, the mirror plane is restored and the direct contribution to σ(ω) is suppressed.
However, the spectral weight above TOO is larger than at 10 K. This may either arise from a
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weak, phonon-assisted two-orbiton contribution or from thermal broadening of the electronic
gap and of the absorption band around 0.2 eV (see figure 5). In the case of phonon-assisted
two-magnon absorption proposed by Lorenzana and Sawatzky [43], σ(ω) in low-dimensional
antiferromagnets is hardly affected at the magnetic ordering temperature TN, because the
spin–spin correlation length remains large above TN. In YVO3, measurements of the specific
heat [22] show that only of the order of 10% of the expected entropy are released in the phase
transition at TOO, which indicates strong fluctuations. Therefore, a finite contribution of phonon-
assisted two-orbiton excitations is possible above TOO. In contrast, the spectral weight abruptly
vanishes upon cooling below TS = 77 K, because the mirror symmetry is restored and because
both the orbital and the magnetic ordering patterns change (see figure 1). The reduction of
h̄ωp from 16 to 10 meV observed between TS and TOO can tentatively be attributed both to a
reduction of ferromagnetic correlations between nearest neighbors above TN and to rather small
changes of the orbital occupation or of the CF levels. For δ = 20–100 meV, a reduction of ωp by
a factor of 1.6 corresponds to changes of the four individual CF levels of only about 4–20 meV.

The line shape, in principle, may serve as a key feature to test our interpretation. However,
this requires one to take into account the orbital exchange interactions and the coupling to the
lattice on the same footing [46]. On top of that, orbiton–orbiton interactions also have to be
considered. Up to now, theoretical predictions for the two-orbiton contribution to σ(ω) have
not been available. Due to momentum conservation, σ(ω) is restricted to the observation of
two-orbiton processes with ktot = k1 + k2 ≈ 0. This means that the two orbitons have opposite
momenta k1 = −k2 with arbitrary ki , and thus the orbiton dispersion is probed throughout the
entire Brillouin zone. The total line width is a convolution of twice the orbiton bandwidth and
the width arising from vibronic coupling to the lattice.

In order to test our interpretation of the feature in YVO3 at 0.4 eV for E ‖ c, we
study HoVO3, which shows a very similar crystal structure and very similar magnetic and
orbital ordering patterns. The absorption coefficient α(ω) ∝ −ln(T(ω))/d of HoVO3 shows
qualitatively the same mid-infrared features as observed in YVO3, i.e. a peak at 0.4 eV
for E ‖ c in the intermediate phase, and a peak at about 0.55 eV for E ‖ a in the whole
temperature range with the same anisotropy between σa(ω) and σb(ω) (see figure 7). In
HoVO3, the phase transitions occur at TS ∼ 40 K and TOO ∼ 188 K [38]. Additionally, an
absorption band consisting of several sharp lines is observed around 0.64 eV, which can be
attributed to the f – f transitions of the Ho3+ ion (5 I8 →

5 I7). The fine structure of this
band is due to transitions between different Stark components. Note that the polarization of
the incident light mainly affects the intensity of the observed lines. The close similarity of
the spectra of YVO3 and HoVO3 regarding the orbital excitations within the 3d shell and
in particular the sensitivity to the phase transitions clearly show that the considered features
reflect intrinsic properties of the vanadates and corroborate our interpretation. It is tempting to
speculate about the implications for other rare earth vanadates, in particular for those with larger
ionic radii such as LaVO3 or CeVO3. These exhibit the monoclinic phase with G-type OO and
C-type SO down to low temperatures. The LDA+DMFT study by De Raychaudhury et al [15]
predicts that the CF splitting is significantly smaller in LaVO3 compared to YVO3, and that
quantum orbital fluctuations are strong in the high-temperature orthorhombic phase of LaVO3,
but suppressed in the monoclinic phase. Our microscopic model refers to G-type OO with
C-type SO. On this basis, we predict similar features to be found in all RVO3 compounds. We
expect that the dependence of the energy, line width, shape and spectral weight on the details
of the lattice distortions, i.e. on the R ions, will help to further elucidate the character of the
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Figure 7. Temperature dependence of −ln(T(ω))/d of HoVO3 for E ‖ a (top
panel), E ‖ b (middle) and E ‖ c (bottom). The band of sharp lines at 0.6 eV
originates from CF excitations within the Ho 4 f shell.

orbital excitations in these compounds. In particular, it is very promising to find out how the
pronounced temperature dependence of the peak position and line shape observed for E ‖ a in
the monoclinic phase of HoVO3 (see figures 8 and 9) behaves at still lower temperatures in the
monoclinic phase of LaVO3.

What are the implications of our results for the claimed observations of orbitons by
Raman scattering [16]–[18] at energies of the order of 40–80 meV (see the introduction)? The
excitation energy of 0.4 eV for E ‖ c implies that 1α + 1β ≈ 0.4 eV. This may be consistent
with a comparably small one-orbiton energy if the CF splitting on V(1) and V(2) differs
substantially, e.g. 1α = 50–100 meV and 1β = 300–350 meV. Note that a rather large value
of |1β − 1α| is in agreement with the observed value of the spectral weight (see above).
However, the spectra for E ‖ b indicate that both 1α and 1β are smaller than 300 meV, implying
100 meV < 1τ < 300 meV.

Finally, we turn to the feature at 0.55 eV for E ‖ a. Its rather high energy suggests that
excitations from the low-lying xy orbital are involved. At all temperatures studied here, there
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Figure 8. Anisotropy of the absorption spectra for E ‖ a and E ‖ b for HoVO3.

Figure 9. Peak frequency observed for E ‖ a in YVO3 and HoVO3.

is no significant contribution to σb(ω) around 0.5 eV (see figures 4 and 7). This pronounced
anisotropy puts severe constraints on the interpretation. Assuming an ideal perovskite structure,
one expects σa(ω) = σb(ω). In YVO3 and HoVO3, the V–O–V bonds are rotated within the
ab-plane by about 45◦ with respect to the orthorhombic a- and b-axes, with antiferro-orbital
ordering in the entire temperature range (see figure 1). Therefore, one expects that an exchange
process between neighboring V sites contributes roughly equally to σa(ω) and σb(ω). In
contrast, next-nearest V neighbors are displaced parallel to the a- or b-axis. One may speculate
that the structural distortions, i.e. rotations and tilts of the octahedra, give rise to the observed
anisotropy. Such a detailed theoretical analysis of the exchange between next-nearest neighbors
including structural details is beyond the scope of the present paper. In order to highlight the
anisotropy and to obtain a better view of the line shape, we plot the difference spectra between
a- and b-axis of HoVO3 in figure 8. The temperature dependence of the peak frequency is shown
in figure 9. Upon cooling down from 300 K, the peak position, spectral weight and line shape
all change below about 100 K. This is more evident in HoVO3, because the change is cut off
at the first-order transition at TS, which is higher in YVO3. Possibly, this may be related to
the Neél temperature, TN = 116 K in YVO3 and 114 K in HoVO3 [38]. This points towards the
entanglement of spin and orbital degrees of freedom, which is expected if exchange interactions
are dominant [56].
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4. Conclusion

In conclusion, the orbital excitations in YVO3 and HoVO3 have been studied by optical
spectroscopy. We have focused on an absorption band observed at 0.4 eV for E ‖ c. We have
shown that this feature is located far below the Mott–Hubbard gap and that it can neither
be interpreted in terms of phonons, magnons, weakly bound (Mott–Hubbard) excitons, nor
be polaronic carriers trapped at impurity sites. Therefore, we identify this feature as an
orbital excitation. However, based on the comparison with the data of VOCl and with recent
calculations [15, 21], we have shown that this absorption peak cannot be explained in a local
CF scenario, i.e. within single-site physics. Alternatively, we propose that this peak reflects
collective orbital excitations, i.e. orbital excitations that are based on the exchange coupling
between neighboring V sites. We demonstrate that the exchange of two orbitals between
adjacent sites along the c-axis in the intermediate phase directly contributes to σ(ω). The energy,
polarization and temperature dependence as well as the spectral weight of the absorption band
at 0.4 eV are in excellent agreement with the expectations for a two-orbiton excitation.

Our results call for a number of further investigations. Our claim can be tested directly by
the direct observation of the dispersion with a momentum-resolving technique such as resonant
inelastic x-ray scattering or electron energy loss spectroscopy. Moreover, we call for theoretical
studies of the orbital exchange that realistically take into account the coupling to the lattice. In
particular, a comparison of our data with predictions for the line shape of two-orbiton absorption
is expected to reveal important information on orbital–orbital interactions. Finally, more detailed
investigations of the exchange between next-nearest neighbors within the ab-plane are necessary
to clarify the nature of the absorption band observed at 0.55 eV for E ‖ a.
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Appendix

Here, we discuss the derivation of the effective Hamiltonian Horb (see equation (3)).
Conceptually, this is even in second order less trivial than one might think at first glance. This is
so because the states without double occupancy (states (a) and (b) in figure 6) are not degenerate
due to the differences in the energies ετ and 1τ . This leads to the remarkable phenomenon that
different second-order calculations lead to different results. This stems from the different ways
to perform the unitary transformation which eliminates the terms which change the number
of double occupancies. Similar observations were made previously in the derivation of the
electron–electron attraction mediated by phonons [57]. We illustrate this issue here by two
calculations.

Both the calculations require splitting the hopping part of HF (second term in equation (1a))
into two parts

t (c†
α1cβ0 + c†

α0cβ1 + h.c.) = HF+ + HF− (A.1)

with HF− = (HF+)
† and HF+ = HF++ + HF−+. The first plus (minus) sign indicates that a double

occupancy is created (annihilated). The second sign indicates whether an electron is raised (+)
or lowered (−), i.e. hops from 0 to 1 (+) of vice versa (−). This implies HF−+ = (HF+−)† and
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HF−− = (HF++)
†. In detail, we have

HF++ = t (c†
α1cβ0n̂α0 + c†

β1cα0n̂β0), (A.2a)

HF+− = t (c†
α0cβ1n̂α1 + c†

β0cα1n̂β1). (A.2b)

A.1 Standard unitary transformation

The standard approach is to determine an anti-Hermitean operator η = η+ − η− such that

Horb = exp(η)HF exp(−η) (A.3)

holds. To eliminate the hopping in leading order, we require [η, HF0] = −HF+ − HF− which
leads to

η++ =
tc†

α1cβ0n̂α0

U ′ + 1α − 1ε
+

tc†
β1cα0n̂β0

U ′ + 1β + 1ε
, (A.4a)

η+− =
tc†

α0cβ1n̂α1

U ′ − 1β − 1ε
+

tc†
β0cα1n̂β1

U ′ − 1α + 1ε
, (A.4b)

where we used 1ε = εβ − εα, and η+ = η++ + η+− as for the parts of the Hamiltonian, with
η− = η−− + η−+, η−− = (η++)

†, and η−+ = (η+−)†. In the second order in t/O(U ′), we obtain
Horb =

1
2 [η, HF+ + HF−]. Using the shorthand Horb+ = Jb†

αb†
β for the creation of two orbitons,

we have to compute

Horb+ = (1/2) ([η++, HF−+] + [HF++, η−+]) . (A.5)

Explicit commutation leads to the standard result

Jstan =
t2U ′

(U ′)2 − (1α − 1ε)2
+

t2U ′

(U ′)2 − (1β + 1ε)2
. (A.6)

For 1τ = 0 = 1ε this is identical to the result known from the derivation of the Heisenberg
spin exchange as in (JHeisen/2)(S+

α S−

β + S−

α S+
β) which implies 2J = JHeisen = 4t2/U ′. Note that

equation (A.6) for the exchange J becomes singular as soon as U ′
→ |1τ ± 1ε|. We will see

that a smoother unitary transformation provides a less singular result.

A.2 Continuous unitary transformation (CUT)

It might be a surprise that the result (A.6) is not unique. But we emphasize that only the matrix
elements on shell, i.e. without energy change, are defined independently from the chosen basis.
All other matrix elements do depend on the chosen basis. Generally, a continuous change of
basis is smoother and less singular than the one-step transformation, see also [57, 58].

The continuous change of the Hamiltonian is parameterized by ` ∈ [0, ∞) and HF(`) is
given by the differential equation

∂`HF(`) = [η(`), HF(`)]. (A.7)

It is understood that HF(` = 0) is given by the Hamiltonian HF in (1a) while HF(` = ∞) is
given by Horb in (3). The transformation (A.7) shall eliminate the terms in HF which change the
number of double occupancies, i.e. the kinetic part HF+ + HF−.
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Hence, we parameterize

HF++(`) = A1(`)c
†
α1cβ0n̂α0 + B1(`)c

†
β1cα0n̂β0, (A.8a)

HF+−(`) = A0(`)c
†
α0cβ1n̂α1 + B0(`)c

†
β0cα1n̂β1, (A.8b)

while HF0 remains constant in linear order in t ; the operators HF−−(`) = (HF++(`))
† and

HF−+(`) = (HF+−(`))† follow by Hermitean conjugation.
The crucial choice is the one for the infinitesimal generator η(`). Our aim is to eliminate

processes which create or annihilate excitations of the order of U ′. Such an elimination can most
easily be done by the Mielke–Knetter–Uhrig generator ηMKU(`) [59]–[61] which consists of the
terms in the Hamiltonian increasing the number of excitations and of the negative terms in the
Hamiltonian decreasing the number of excitations

ηMKU(`) := HF+(`) − HF−(`). (A.9)

For a general discussion see also [62]. With this choice one obtains in linear order in t

∂`HF+(`) = −[HF+(`), HF0], (A.10)

which implies the differential equations

∂` A1 = −(U ′ + 1α − 1ε)A1, (A.11a)

∂` A0 = −(U ′
− 1β − 1ε)A0, (A.11b)

∂`B1 = −(U ′ + 1β + 1ε)B1, (A.11c)

∂`B0 = −(U ′
− 1α + 1ε)B0. (A.11d)

The solutions consist in decreasing exponential functions starting at t for ` = 0 because we
assume all the energy differences in the parentheses in equations (A.11a)–(A.11d) to be positive,
i.e. U ′ dominates the other energies, see equations (4a) and (4b).

The orbital exchange is obtained by equating the second-order terms in t in (A.7) which
implies

∂` J (`)b†
αb†

β = 2[HF++(`), HF−+(`)]. (A.12)

Since the right-hand side is given by the solutions of equations (A.11a)–(A.11d) an integration
suffices to provide JCUT = J (` = ∞)

JCUT = 2
∫

∞

0
(A1(`)A0(`) + B1(`)B0(`)) d`

=
t2

U ′ − δ + ecE
+

t2

U ′ + δ − ecE

=
2t2U ′

(U ′)2 − (δ − ecE)2
, (A.13)

where we use the shorthand δ for the CF levels (see equation (6)), and E denotes the applied
electric field. This is the result used in the main part of the paper, see equation (5).

Note that we retrieve the well-known result for the Heisenberg exchange of 2J = JHeisen =

4t2/U ′ for E = 0 and δ = 0, i.e. equivalent V sites.
Even more interesting is that JCUT 6= Jstan. In particular, the individual excitation energies

1τ do not occur in JCUT in (A.13) but only their difference (see equation (6)). Hence, a regime
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exists with δ = 0 and 1τ → U ′, where Jstan diverges while JCUT remains unaffected. So the CUT
result is less singular. Moreover, the expression for JCUT is simpler than the one for Jstan.

Tracing back from where the difference between the standard and the CUT results
originates we have to compare equations (A.5) and (A.12). In the standard calculation (A.5),
there is a striking asymmetry between the two operators which are commutated. Only one of
them (η) carries information on the excitation energies. In the CUT calculation (A.12), both the
commutated operators carry the dependence on the excitation energies in the same way by their
dependence on `. This implies also that a single commutation suffices because two commutators
are equal while there are two different ones in (A.5).

For all the above reasons, we favor the CUT derivation. We stress, however, that in the
regime relevant for YVO3 the difference between Jstan and JCUT is quantitatively of minor
importance.

References

[1] Tokura Y and Nagaosa N 2000 Science 288 462
[2] Khaliullin G 2005 Prog. Theor. Phys. Suppl. 160 155
[3] Khomskii D I 2005 Phys. Scr. 72 CC8
[4] Lee S et al 2006 Nat. Mater. 5 471
[5] Kugel K I and Khomskii D I 1973 Sov. Phys.—JETP 37 725
[6] Jahn H A and Teller E 1937 Proc. R. Soc. A 161 220
[7] Sugano S, Tanabe Y and Kamimura H 1970 Multiplets of Transition-Metal Ions in Crystals (New York:

Academic)
[8] Ballhausen C F 1962 Introduction to Ligand Field Theory (New York: McGraw-Hill)
[9] Rückamp R et al 2005 New J. Phys. 7 144

[10] Ishihara S and Maekawa S 2000 Phys. Rev. B 62 2338
[11] Saitoh E, Okamoto S, Takahashi K T, Tobe K, Yamamoto K, Kimura T, Ishihara S, Maekawa S and Tokura Y

2001 Nature 410 180
[12] Grüninger M, Rückamp R, Windt M and Freimuth A 2002 Nature 418 39
[13] Ishihara S 2004 Phys. Rev. B 69 075118
[14] Khaliullin G, Horsch P and Olés A M 2001 Phys. Rev. Lett. 86 3879
[15] De Raychaudhury M, Pavarini E and Andersen O K 2007 Phys. Rev. Lett. 99 126402
[16] Miyasaka S, Onoda S, Okimoto Y, Fujioka J, Iwama M, Nagaosa N and Tokura Y 2005 Phys. Rev. Lett.

94 076405
[17] Miyasaka S, Fujioka J, Iwama M, Okimoto Y and Tokura Y 2006 Phys. Rev. B 73 224436
[18] Sugai S and Hirota K 2006 Phys. Rev. B 73 020409
[19] Ulrich C, Gössling A, Grüninger M, Guennou M, Roth H, Cwik M, Lorenz T, Khaliullin G and Keimer B

2006 Phys. Rev. Lett. 97 157401
[20] Ulrich C, Ghiringhelli G, Piazzalunga A, Braicovich L, Brookes N B, Roth H, Lorenz T and Keimer B 2008

Phys. Rev. B 77 113102
[21] Solovyev I V 2006 Phys. Rev. B 74 054412
[22] Blake G R, Palstra T T M, Ren Y, Nugroho A A and Menovsky A A 2002 Phys. Rev. B 65 174112
[23] Reehuis M, Ulrich C, Pattison P, Ouladdiaf B, Rheinstädter M C, Ohl M, Regnault L P, Miyasaka M,

Tokura Y and Keimer B 2006 Phys. Rev. B 73 094440
[24] Ren Y, Palstra T T M, Khomskii D I, Pellegrin E, Nugroho A A, Menovsky A A and Sawatzky G A 1998

Nature 396 441
[25] Ren Y, Palstra T T M, Khomskii D I, Nugroho A A, Menovsky A A and Sawatzky G A 2000 Phys. Rev. B

62 6577

New Journal of Physics 10 (2008) 053027 (http://www.njp.org/)

http://dx.doi.org/10.1126/science.288.5465.462
http://dx.doi.org/10.1143/PTPS.160.155
http://dx.doi.org/10.1238/Physica.Regular.072a00CC8
http://dx.doi.org/10.1038/nmat1605
http://dx.doi.org/10.1098/rspa.1937.0142
http://dx.doi.org/10.1088/1367-2630/7/1/144
http://dx.doi.org/10.1103/PhysRevB.62.2338
http://dx.doi.org/10.1038/35065547
http://dx.doi.org/10.1038/418039a
http://dx.doi.org/10.1103/PhysRevB.69.075118
http://dx.doi.org/10.1103/PhysRevLett.86.3879
http://dx.doi.org/10.1103/PhysRevLett.99.126402
http://dx.doi.org/10.1103/PhysRevLett.94.076405
http://dx.doi.org/10.1103/PhysRevLett.94.076405
http://dx.doi.org/10.1103/PhysRevB.73.224436
http://dx.doi.org/10.1103/PhysRevB.73.020409
http://dx.doi.org/10.1103/PhysRevLett.97.157401
http://dx.doi.org/10.1103/PhysRevB.77.113102
http://dx.doi.org/10.1103/PhysRevB.74.054412
http://dx.doi.org/10.1103/PhysRevB.65.174112
http://dx.doi.org/10.1103/PhysRevB.73.094440
http://dx.doi.org/10.1038/24802
http://dx.doi.org/10.1103/PhysRevB.62.6577
http://dx.doi.org/10.1103/PhysRevB.62.6577
http://www.njp.org/


21

[26] Miyasaka S, Okimoto Y, Iwama M and Tokura Y 2003 Phys. Rev. B 68 100406
[27] Tsvetkov A A, Mena F P, van Loosdrecht P H M, van der Marel D, Ren Y, Nugroho A A, Menovsky A A,

Elfimov I S and Sawatzky G A 2004 Phys. Rev. B 69 075110
[28] Noguchi M, Nakazawa A, Oka S, Arima T, Wakabayashi Y, Nakao H and Murakami Y 2000 Phys. Rev. B

62 9271
[29] Sawada H and Terakura K 1998 Phys. Rev. B 58 6831
[30] Mizokawa T, Khomskii D I and Sawatzky G A 1999 Phys. Rev. B 60 7309
[31] Fang Z and Nagaosa N 2004 Phys. Rev. Lett. 93 176404
[32] Otsuka Y and Imada M 2006 J. Phys. Soc. Japan 75 124707
[33] Bombik A, Lesniewska B and Oles A 1978 Phys. Status Solidi a 50 K17
[34] Ulrich C, Khaliullin G, Sirker J, Reehuis M, Ohl M, Miyasaka S, Tokura Y and Keimer B 2003 Phys. Rev.

Lett. 91 257202
[35] Horsch P, Khaliullin G and Oleś A M 2003 Phys. Rev. Lett. 91 257203
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