299 research outputs found

    Heterogeneous and anisotropic dynamics of a 2D gel

    Full text link
    We report X-ray Photon Correlation Spectroscopy (XPCS) results on a bidimensional (2D) gel formed by a Langmuir monolayer of gold nanoparticles. The system allows an experimental determination of the fourth order time correlation function which is compared to the usual second order correlation functions and to the mechanical response measured on macroscopic scale. The observed dynamics is anisotropic, heterogeneous and super-diffusive on the nanoscale. Different time scales, associated with fast heterogeneous dynamics inside 2D cages and slower motion of larger parts of the film, can be identified from the correlation functions

    Structural and Magnetic Dynamics in the Magnetic Shape Memory Alloy Ni2_2MnGa

    Full text link
    Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni2_2MnGa film and reveal a set of timescales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300~fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320~fs, which is comparable to the quenching of the structural modulation.Comment: 5 pages, 3 figures. Supplementary materials 5 pages, 5 figure

    The glass transition in colloidal suspensions of silica nanoparticles in a water-lutidine mixture: A photon correlation study

    Get PDF
    We discuss the structural and dynamical properties of a colloidal glass of silica nanoparticles in a water-lutidine mixture probed using photon correlation techniques. We describe the small angle set-up used to perform X-ray photon correlation spectroscopy (XPCS) experiments and the procedure followed to measure the volume fraction of the sample. We describe the structure of the glass using a short range potential model and a theoretical structure factor within the mean spherical approximation. The dynamics finally is characterized by a Gaussian-like intermediate scattering function which is not compatible with the classical picture of an heterogeneous diffusive process

    Watching the birth of a charge density wave order: diffraction study on nanometer-and picosecond-scales

    Full text link
    Femtosecond time-resolved X-ray diffraction is used to study a photo-induced phase transition between two charge density wave (CDW) states in 1T-TaS2_2, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photo-induced I-CDW phase then develops through a nucleation/growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a non-conservative order parameter.Comment: 6 pages, 5 figure

    Ultrafast relaxation dynamics of the antiferrodistortive phase in Ca doped SrTiO3

    Full text link
    The ultrafast dynamics of the octahedral rotation in Ca:SrTiO3 is studied by time resolved x-ray diffraction after photo excitation over the band gap. By monitoring the diffraction intensity of a superlattice reflection that is directly related to the structural order parameter of the soft-mode driven antiferrodistortive phase in Ca:SrTiO3, we observe a ultrafast relaxation on a 0.2 ps timescale of the rotation of the oxygen octahedron, which is found to be independent of the initial temperaure despite large changes in the corresponding soft-mode frequency. A further, much smaller reduction on a slower picosecond timescale is attributed to thermal effects. Time-dependent density-functional-theory calculations show that the fast response can be ascribed to an ultrafast displacive modification of the soft-mode potential towards the normal state, induced by holes created in the oxygen 2p states

    Asymmetrically cut crystals as optical elements for highly collimated x‐ray beams

    Full text link
    Asymmetrically cut perfect crystals, in both the Laue and Bragg geometries, are examined as single crystal monochromators for x‐ray beams that are collimated to a small fraction of the Darwin width, as is typical in experiments with coherent x rays. Both the Laue and asymmetric Bragg geometries are plagued by an inherent chromatic aberration that increases the beam divergence much beyond that of the symmetric Bragg geometry. Measurements from a recent experiment at the ESRF are presented to compare Si(220) (symmetric Bragg), diamond(111) (asymmetric Laue), and diamond(111) (symmetric Bragg inclined) geometries. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70952/2/RSINAK-66-2-1506-1.pd

    Ultrafast structural dynamics of the Fe-pnictide parent compound BaFe2As2

    Full text link
    Using femtosecond time-resolved x-ray diffraction we investigate the structural dynamics of the coherently excited A1g phonon mode in the Fe-pnictide parent compound BaFe2As2. The fluence dependent intensity oscillations of two specific Bragg reflections with distinctly different sensitivity to the pnictogen height in the compound allow us to quantify the coherent modifications of the Fe-As tetrahedra, indicating a transient increase of the Fe magnetic moments. By a comparison with time-resolved photoemission data we derive the electron-phonon deformation potential for this particular mode. The value of Delta mu/Delta z = -(1.0 - 1.5) eV/A is comparable with theoretical predictions and demonstrates the importance of this degree of freedom for the electron-phonon coupling in the Fe pnictides.Comment: 5 pages, 4 figures, Supplementary materia
    corecore