69 research outputs found

    A Modified Progressive Supranuclear Palsy Rating Scale

    Get PDF
    Background: The Progressive Supranuclear Palsy Rating Scale is a prospectively validated physician-rated measure of disease severity for progressive supranuclear palsy. We hypothesized that, according to experts' opinion, individual scores of items would differ in relevance for patients' quality of life, functionality in daily living, and mortality. Thus, changes in the score may not equate to clinically meaningful changes in the patient's status. Objective: The aim of this work was to establish a condensed modified version of the scale focusing on meaningful disease milestones. Methods: Sixteen movement disorders experts evaluated each scale item for its capacity to capture disease milestones (0 = no, 1 = moderate, 2 = severe milestone). Items not capturing severe milestones were eliminated. Remaining items were recalibrated in proportion to milestone severity by collapsing across response categories that yielded identical milestone severity grades. Items with low sensitivity to change were eliminated, based on power calculations using longitudinal 12-month follow-up data from 86 patients with possible or probable progressive supranuclear palsy. Results: The modified scale retained 14 items (yielding 0–2 points each). The items were rated as functionally relevant to disease milestones with comparable severity. The modified scale was sensitive to change over 6 and 12 months and of similar power for clinical trials of disease-modifying therapy as the original scale (achieving 80% power for two-sample t test to detect a 50% slowing with n = 41 and 25% slowing with n = 159 at 12 months). Conclusions: The modified Progressive Supranuclear Palsy Rating Scale may serve as a clinimetrically sound scale to monitor disease progression in clinical trials and routine

    Upstream Supply Chain Visibility and Complexity Effect on Focal Company’s Sustainable Performance: Indian Manufacturers’ Perspective

    Get PDF
    Understanding supply chain sustainability performance is increasingly important for supply chain researchers and managers. Literature has considered supply chain sustainability and the antecedents of performance from a triple bottom line (economic, social, and environmental) perspective. However, the role of supply chain visibility and product complexity contingency in achieving sustainable supply chain performance has not been explored in depth. To address this gap, this study utilizes a contingent resource-based view theory perspective to understand the role of product complexity in shaping the relationship between upstream supply chain visibility (resources and capabilities) and the social, environmental, and economic performance dimensions. We develop and test a theoretical model using survey data gathered from 312 Indian manufacturing organizations. Our findings indicate that supply chain visibility (SCV) has significant influence on social and environmental performance under the moderation effect of product complexity. Hence, the study makes significant contribution to the extant literature by examining the impact of SCV under moderating effect of product complexity on social performance and environmental performance

    The epsilon-mechanism in PMS and MS delta Scuti stars

    Full text link
    peer reviewedDelta Scuti type stars are known to pulsate in nonradial low-order p and g modes. These oscillation modes are driven by the so-called kappa-mechanism involving the second helium ionization zone. However, since g modes have significant amplitudes near the stellar core, their excitation might be influenced by the epsilon-mechanism which is associated to the nuclear energy production. We investigate the effect of the epsilon-mechanism on the stability of oscillation modes in 1.5 M(solar) pre-main sequence and main sequence stars

    What Happens to the Gas in Globular Clusters?

    Full text link
    Observations of globular clusters show that they contain much too little gas or dust, compared to what should be present due to the mass-losing stars in the cluster. Many authors have been intrigued by the fate of the gas in globular clusters. They have suggested various mechanisms by which the gas could escape from the cluster, such as stellar UV radiation, cluster winds driven by X-ray bursters, novae, or flare-stars, relativistic winds from millisecond pulsars, condensation into stars, accretion processes drawing upon a central gas reservoir, continuous sweeping of the cluster gas by the gaseous medium of the Galactic halo dots. Recent results also show that globular cluster stars show many abundance anomalies. Accretion of interstellar gas by the cluster stars has been suggested as a plausible mechanism to explain these anomalies. It is also a major ingredient of the EASE scenario linking halo field stars to globular clusters, which we have recently developed to explain strong r-and s-elements correlations in halo field dwarf stars. Here we will briefly review the status of gas and dust detection in globular clusters, as well as the possible gas removal mechanisms. We will explore in more details the gas and dust accretion processes onto main sequence stars. In particular, we will study the efficiency of this mechanism in removing gas from the globular clusters interstellar medium
    • …
    corecore