109 research outputs found
Higgs Low-Energy Theorem (and its corrections) in Composite Models
The Higgs low-energy theorem gives a simple and elegant way to estimate the
couplings of the Higgs boson to massless gluons and photons induced by loops of
heavy particles. We extend this theorem to take into account possible nonlinear
Higgs interactions resulting from a strong dynamics at the origin of the
breaking of the electroweak symmetry. We show that, while it approximates with
an accuracy of order a few percents single Higgs production, it receives
corrections of order 50% for double Higgs production. A full one-loop
computation of the gg->hh cross section is explicitly performed in MCHM5, the
minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard
Model fermions embedded into the fundamental representation of SO(5). In
particular we take into account the contributions of all fermionic resonances,
which give sizeable (negative) corrections to the result obtained considering
only the Higgs nonlinearities. Constraints from electroweak precision and
flavor data on the top partners are analyzed in detail, as well as direct
searches at the LHC for these new fermions called to play a crucial role in the
electroweak symmetry breaking dynamics.Comment: 30 pages + appendices and references, 12 figures. v2: discussion of
flavor constraints improved; references added; electroweak fit updated,
results unchanged. Matches published versio
Higgs Boson Masses in the Complex NMSSM at One-Loop Level
The Next-to-Minimal Supersymmetric Extension of the Standard Model (NMSSM)
with a Higgs sector containing five neutral and two charged Higgs bosons allows
for a rich phenomenology. In addition, the plethora of parameters provides many
sources of CP violation. In contrast to the Minimal Supersymmetric Extension,
CP violation in the Higgs sector is already possible at tree-level. For a
reliable understanding and interpretation of the experimental results of the
Higgs boson search, and for a proper distinction of Higgs sectors provided by
the Standard Model or possible extensions, the Higgs boson masses have to be
known as precisely as possible including higher-order corrections. In this
paper we calculate the one-loop corrections to the neutral Higgs boson masses
in the complex NMSSM in a Feynman diagrammatic approach adopting a mixed
renormalization scheme based on on-shell and conditions. We study
various scenarios where we allow for tree-level CP-violating phases in the
Higgs sector and where we also study radiatively induced CP violation due to a
non-vanishing phase of the trilinear coupling in the stop sector. The
effects on the Higgs boson phenomenology are found to be significant. We
furthermore estimate the theoretical error due to unknown higher-order
corrections by both varying the renormalization scheme of the top and bottom
quark masses and by adopting different renormalization scales. The residual
theoretical error can be estimated to about 10%
Composite Higgs Boson Pair Production at the LHC
The measurement of the trilinear and quartic Higgs self-couplings is
necessary for the reconstruction of the Higgs potential. This way the Higgs
mechanism as the origin of electroweak symmetry breaking can be tested. The
couplings are accessible in multi-Higgs production processes at the LHC. In
this paper we investigate the prospects of measuring the trilinear Higgs
coupling in composite Higgs models. In these models, the Higgs boson emerges as
a pseudo-Goldstone boson of a strongly interacting sector, and the Higgs
potential is generated by loops of the Standard Model (SM) gauge bosons and
fermions. The Higgs self-couplings are modified compared to the SM and
controlled by the compositeness parameter in addition to the Higgs boson
mass. We construct areas of sensitivity to the trilinear Higgs coupling in the
relevant parameter space for various final states
Inhibition of Lassa Virus Glycoprotein Cleavage and Multicycle Replication by Site 1 Protease-Adapted α1-Antitrypsin Variants
The virus family Arenaviridae includes several hemorrhagic fever causing agents such as Lassa, Guanarito, Junin, Machupo, and Sabia virus that pose a major public health concern to the human population in West African and South American countries. Current treatment options to control fatal outcome of disease are limited to the ribonucleoside analogue ribavirin, although its use has some significant limitations. The lack of effective treatment alternatives emphasizes the need for novel antiviral therapeutics to counteract these life-threatening infections. Maturation cleavage of the viral envelope glycoprotein by the host cell proprotein convertase site 1 protease (S1P) is critical for infectious virion production of several pathogenic arenaviruses. This finding makes this protease an attractive target for the development of novel anti-arenaviral therapeutics. We demonstrate here that highly selective S1P-adapted α1-antitrypsins have the potential to efficiently inhibit glycoprotein processing, which resulted in reduced Lassa virus replication. Our findings suggest that S1P should be considered as an antiviral target and that further optimization of modified α1-antitrypsins could lead to potent and specific S1P inhibitors with the potential for treatment of certain viral hemorrhagic fevers
The CLIC Potential for New Physics
The Compact Linear Collider (CLIC) is a mature option for the future of high
energy physics. It combines the benefits of the clean environment of
colliders with operation at high centre-of-mass energies, allowing to probe
scales beyond the reach of the Large Hadron Collider (LHC) for many scenarios of new physics. This places the CLIC project at a privileged spot in between the precision and energy frontiers, with capabilities that will significantly extend knowledge on both fronts at the end of the LHC era. In this report we review and revisit the potential of CLIC to search, directly and indirectly, for physics beyond the Standard Model
Higgs-mass predictions in the MSSM and beyond
Predictions for the Higgs masses are a distinctive feature of supersymmetric
extensions of the Standard Model, where they play a crucial role in
constraining the parameter space. The discovery of a Higgs boson and the
remarkably precise measurement of its mass at the LHC have spurred new efforts
aimed at improving the accuracy of the theoretical predictions for the Higgs
masses in supersymmetric models. The "Precision SUSY Higgs Mass Calculation
Initiative" (KUTS) was launched in 2014 to provide a forum for discussions
between the different groups involved in these efforts. This report aims to
present a comprehensive overview of the current status of Higgs-mass
calculations in supersymmetric models, to document the many advances that were
achieved in recent years and were discussed during the KUTS meetings, and to
outline the prospects for future improvements in these calculations
- …