4 research outputs found

    Ground deformation monitoring of the eruption offshore Mayotte

    Get PDF
    In May 2018, the Mayotte island, located in the Indian Ocean, was affected by an unprecedented seismic crisis, followed by anomalous on-land surface displacements in July 2018. Cumulatively from July 1, 2018 to December 31, 2021, the horizontal displacements were approximately 21 to 25 cm eastward, and subsidence was approximately 10 to 19 cm. The study of data recorded by the on-land GNSS network, and their modeling coupled with data from ocean bottom pressure gauges, allowed us to propose a magmatic origin of the seismic crisis with the deflation of a deep source east of Mayotte, that was confirmed in May 2019 by the discovery of a submarine eruption, 50 km offshore of Mayotte ([Feuillet et al., 2021]). Despite a non-optimal network geometry and receivers located far from the source, the GNSS data allowed following the deep dynamics of magma transfer, via the volume flow monitoring, throughout the eruption

    5 years of rainfall, discharge and suspended sediment concentration monitoring in three headwater catchments on volcanic soils in Mayotte Island (Indian Ocean)

    No full text
    Mayotte is located in the Mozambique Channel between Madagascar and Mozambique in the Indian Ocean, and is part of the Comoros archipelago. A hydro-sedimentary observatory was installed on three coastal catchment representative of the morphology, geology and land use observed on the island of Mayotte: the Mtsamboro catchment (19 ha), the Dzoumogné catchment (343 ha) and the Salim Be catchment (534 ha). For each watershed, the monitoring is composed of a hydrological and sedimentary station at the outlet and two climatic stations, located upstream and downstream of the basin. Rainfall, discharge and suspended sediment concentration data were recorded between November 2015 and August 2020 at 2-minute time steps. The data is available with a time step of one hour, one day and one month

    Mayotte seismic crisis: building knowledge in near real-time by combining land and ocean-bottom seismometers, first results

    No full text
    International audienceSummary The brutal onset of seismicity offshore Mayotte island North of the Mozambique Channel, Indian Ocean, that occurred in May 2018 caught the population, authorities, and scientific community off guard. Around 20 potentially felt earthquakes were recorded in the first 5 days, up to magnitude Mw 5.9. The scientific community had little pre-existing knowledge of the seismic activity in the region due to poor seismic network coverage. During 2018 and 2019, the MAYOBS/REVOSIMA seismology group was progressively built between four French research institutions to improve instrumentation and data sets to monitor what we know now as an on-going exceptional sub-marine basaltic eruption. After the addition of 3 medium-band stations on Mayotte island and 1 on Grande Glorieuse island in early 2019, the data recovered from the Ocean Bottom Seismometers were regularly processed by the group to improve the location of the earthquakes detected daily by the land network. We first built a new local 1D velocity model and established specific data processing procedures. The local 1.66 low VP/VS ratio we estimated is compatible with a volcanic island context. We manually picked about 125,000 P and S phases on land and sea bottom stations to locate more than 5,000 events between February 2019 and May 2020. The earthquakes outline two separate seismic clusters offshore that we named Proximal and Distal. The Proximal cluster, located 10km offshore Mayotte eastern coastlines, is 20 to 50 km deep and has a cylindrical shape. The Distal cluster start 5 km to the east of the Proximal cluster and extends below Mayotte's new volcanic edifice, from 50 km up to 25 km depth. The two clusters appear seismically separated, however our dataset is insufficient to firmly demonstrate this
    corecore