72 research outputs found

    Salinity inversions in the thermocline under upwelling favorable winds

    Get PDF
    This paper discusses and explains the phenomenon of salinity inversions in the thermocline offshore from an upwelling region during upwelling favorable winds. Using the nontidal central Baltic Sea as an easily accessible natural laboratory, high-resolution transect and station observations in the upper layers are analyzed. The data show local salinity minima in the strongly stratified seasonal thermocline during summer conditions under the influence of upwelling favorable wind. A simple analytical box model using parameters (including variation by means of a Monte Carlo method) estimated from a hindcast model for the Baltic Sea is constructed to explain the observations. As a result, upwelled water with high salinity and low temperature is warmed up due to downward surface heat fluxes while it is transported offshore by the Ekman transport. The warming of upwelled surface water allows maintenance of stable stratification despite the destabilizing salinity stratification, such that local salinity minima in the thermocline can be generated. Inspection of published observations from the Benguela, Peruvian, and eastern tropical North Atlantic upwelling systems shows that also there salinity inversions occur in the thermocline, but in these cases thermocline salinity shows local maxima, since upwelled water has a lower salinity than the surface water. It is hypothesized that thermocline salinity inversions should generally occur offshore from upwelling regions whenever winds are steady enough and surface warming is sufficiently strong.DFG/CRC/TRR 18

    Scientific cruise report Elisabeth Mann-Borgese SUMMIX-MESO

    Get PDF
    Objectives: It was intended to investigate the meso-scale and sub-meso-scale dynamics of the upper layers (upper 80 m) in the central Baltic Sea, using towed instruments and acoustic profilers, to better understand the physical conditions for cyanobacteria blooms. Under optimal weather conditions, we intended to carry out 10 one-day quasi-synoptic surveys by cruising in large meandering patterns (see fig. 1) covering areas of 15 X 15 nautical miles or 8 X 8 nautical miles, depending on the survey mode, see below. This cruise was the meso-scale component of the two-ship SUMMIX experiment together with RV Meteor (Physical and biochemical exchange-, mixing- and transformation processes in the central Baltic Sea during summer stratification and their controls on the cyanobacterial summer bloom) which was intended to be located at a fixed position nearby RV Elisabeth Mann Borgese in order to survey the water column in high vertical, spatial and parameter resolution, including biogeochemical experiments on board. In addition to the physical parameters, also vertical and horizontal zooplankton net tows as well as water samples taken by CTD bottles were planned

    Multiscale spatial distribution of macrofauna response to fishery pressure

    Get PDF
    Trawling is one of the most damaging activities for fauna living at the ocean resulting in simultaneous pulse and chronic impacts on benthic communities on multiple spatio-temporal scales. Recently, high quality Vessel Monitoring by Satellite (VMS) data provides spatio-temporal information of swept area by fishery trawlers. Using this huge amount of information in combination with about 20 environmental descriptors, we aim to tease apart the effect of species endogenous features (i.e. dispersal capability) and exogenous factors (i.e. environmental conditions) on the fauna responses to fishery and its related spatial scales. We analyse data of 300 grab-samples taken in the German Bight (North Sea), encompassing 140 macrobenthic species collected on a regular grid over an area of about 8000 km2. We use Moran Eigenvector Maps to model patterns of potential connectivity between locations and shed light on which spatial scales fisheries, environmental characteristics, and macrobenthos are linked. Finally, we show maps of fauna response to fishery. We argue that despite the importance of proper quantification of fishing pressure and other human activities, shedding light on the effects and response to such activities is crucial for a sound understanding of the processes that shape ecosystems and diversity distribution

    Maximum sinking velocities of suspended particulate matter in a coastal transition zone

    Get PDF
    Marine coastal ecosystem functioning is crucially linked to the transport and fate of suspended particulate matter (SPM). Transport of SPM is controlled by, amongst other factors, sinking velocity ws. Since the ws of cohesive SPM aggregates varies significantly with size and composition of the mineral and organic origin, ws exhibits large spatial variability along gradients of turbulence, SPM concentration (SPMC) and SPM composition. In this study, we retrieved ws for the German Bight, North Sea, by combining measured vertical turbidity profiles with simulation results for turbulent eddy diffusivity. We analyzed ws with respect to modeled prevailing dissipation rates ϵ and found that mean ws were significantly enhanced around log10(ϵ (m2 s−3)) ≈ −5.5. This ϵ region is typically found at water depths of approximately 15 to 20 m along cross-shore transects. Across this zone, SPMC declines towards the offshore waters and a change in particle composition occurs. This characterizes a transition zone with potentially enhanced vertical fluxes. Our findings contribute to the conceptual understanding of nutrient cycling in the coastal region which is as follows. Previous studies identified an estuarine circulation. Its residual landward-oriented bottom currents are loaded with SPM, particularly within the transition zone. This retains and traps fine sediments and particulate-bound nutrients in coastal waters where organic components of SPM become remineralized. Residual surface currents transport dissolved nutrients offshore, where they are again consumed by phytoplankton. Algae excrete extracellular polymeric substances which are known to mediate mineral aggregation and thus sedimentation. This probably takes place particularly in the transition zone and completes the coastal nutrient cycle. The efficiency of the transition zone for retention is thus suggested as an important mechanism that underlies the often observed nutrient gradients towards the coast.BMBF/PACEBMBF/FKZ 030634ABMBF/FKZ 03F0667AHelmholtz Society/PACESNiedersächsisches Ministerium für Wissenschaft und Kultur (MWK)Niedersächsisches Ministerium für Umwelt und Klimaschutz (MUK)Coastal Observing System for Northern and Arctic Seas (COSYNA
    • …
    corecore