7 research outputs found

    Under the sea: How can we use heart rate and accelerometers to remotely assess fish welfare in salmon aquaculture?

    Get PDF
    Recent advances in bio-sensing technologies open for new possibilities to monitor and safeguard the welfare of fishes in aquaculture. Yet before taken into practice, the applicability of all novel biosensors must be validated, and the breadth of their potential uses must be investigated. Here, we investigated how ECG and accelerometryderived parameters measured using bio-loggers, such as heart rate, acceleration and variance of acceleration, relate to O2 consumption rate (MO2) and blood borne indicators of stress and tissue damage to determine how biologgers may be used to estimate stress and welfare. To do this, we instrumented 13 fish with a biologger and an intravascular catheter and subjected them to a swimming protocol followed by a stress protocol throughout which the physiological parameters were measured and analyzed a posteriori. Additionally, based on the empirical data obtained, we calculated the mathematical relationships between the bio-logger data and the other parameters and tested the relationship between the calculated parameters using the linear regression algorithms and the measured parameters. Our results show that acceleration is a good proxy for swimming activity as it is closely related to tail beat frequency. In addition, we show that heart rate, acceleration and variance of acceleration all can be used as predictors for metabolic rate. Accelerometry based data, especially variance of acceleration, significantly explain some of the variation in venous partial pressure of O2, blood lactate and plasma cortisol concentration. Variance of acceleration also significantly explains some of the variation in pH and mean corpuscular hemoglobin concentration. These relationships are explained by variance of acceleration being a good indicator of the onset of burst-swimming activity, which is often followed by acid-base imbalances and release of catecholamines. The results herein indicate that bio-logger data can be used to extrapolate a range of stress-related physiological events when these are accompanied by increases in activity and highlight the great potential of biosensors for monitoring fish welfare

    Continuous gastric saline perfusion elicits cardiovascular responses in freshwater rainbow trout (Oncorhynchus mykiss)

    Get PDF
    When in seawater, rainbow trout (Oncorhynchus mykiss) drink to avoid dehydration and display stroke volume (SV) mediated elevations in cardiac output (CO) and an increased proportion of CO is diverted to the gastrointestinal tract as compared to when in freshwater. These cardiovascular alterations are associated with distinct reductions in systemic and gastrointestinal vascular resistance (R-Sys and R-GI, respectively). Although increased gastrointestinal blood flow (GBF) is likely essential for osmoregulation in seawater, the sensory functions and mechanisms driving the vascular resistance changes and other associated cardiovascular changes in euryhaline fishes remain poorly understood. Here, we examined whether internal gastrointestinal mechanisms responsive to osmotic changes mediate the cardiovascular changes typically observed in seawater, by comparing the cardiovascular responses of freshwater-acclimated rainbow trout receiving continuous (for 4 days) gastric perfusion with half-strength seawater (1/2 SW, similar to 17 ppt) to control fish (i.e., no perfusion). We show that perfusion with 1/2 SW causes significantly larger increases in CO, SV and GBF, as well as reductions in R-Sys and R-GI, compared with the control, whilst there were no significant differences in blood composition between treatments. Taken together, our data suggest that increased gastrointestinal luminal osmolality is sensed directly in the gut, and at least partly, mediates cardiovascular responses previously observed in SW acclimated rainbow trout. Even though a potential role of mechano-receptor stimulation from gastrointestinal volume loading in eliciting these cardiovascular responses cannot be excluded, our study indicates the presence of internal gastrointestinal milieu-sensing mechanisms that affect cardiovascular responses when environmental salinity changes

    Energetic savings and cardiovascular dynamics of a marine euryhaline fish (Myoxocephalus scorpius) in reduced salinity

    Get PDF
    Few studies have addressed how reduced water salinity affects cardiovascular and metabolic function in marine euryhaline fishes, despite its relevance for predicting impacts of natural salinity variations and ongoing climate change on marine fish populations. Here, shorthorn sculpin (Myoxocephalus scorpius) were subjected to different durations of reduced water salinity from 33 to 15 ppt. Routine metabolic rate decreased after short-term acclimation (4-9 days) to 15 ppt, which corresponded with similar reductions in cardiac output. Likewise, standard metabolic rate decreased after acute transition (3 h) from 33 to 15 ppt, suggesting a reduced energetic cost of osmoregulation at 15 ppt. Interestingly, gut blood flow remained unchanged across salinities, which contrasts with previous findings in freshwater euryhaline teleosts (e.g., rainbow trout) exposed to different salinities. Although plasma osmolality, [Na+], [Cl-] and [Ca2+] decreased in 15 ppt, there were no signs of cellular osmotic stress as plasma [K+], [hemoglobin] and hematocrit remained unchanged. Taken together, our data suggest that shorthorn sculpin are relatively weak plasma osmoregulators that apply a strategy whereby epithelial ion transport mechanisms are partially maintained across salinities, while plasma composition is allowed to fluctuate within certain ranges. This may have energetic benefits in environments where salinity naturally fluctuates, and could provide shorthorn sculpin with competitive advantages if salinity fluctuations intensify with climate change in the future

    Increased reliance on coronary perfusion for cardiorespiratory performance in seawater-acclimated rainbow trout

    Get PDF
    Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water

    Under the sea: How can we use heart rate and accelerometers to remotely assess fish welfare in salmon aquaculture?

    Get PDF
    Recent advances in bio-sensing technologies open for new possibilities to monitor and safeguard the welfare of fishes in aquaculture. Yet before taken into practice, the applicability of all novel biosensors must be validated, and the breadth of their potential uses must be investigated. Here, we investigated how ECG and accelerometryderived parameters measured using bio-loggers, such as heart rate, acceleration and variance of acceleration, relate to O2 consumption rate (MO2) and blood borne indicators of stress and tissue damage to determine how biologgers may be used to estimate stress and welfare. To do this, we instrumented 13 fish with a biologger and an intravascular catheter and subjected them to a swimming protocol followed by a stress protocol throughout which the physiological parameters were measured and analyzed a posteriori. Additionally, based on the empirical data obtained, we calculated the mathematical relationships between the bio-logger data and the other parameters and tested the relationship between the calculated parameters using the linear regression algorithms and the measured parameters. Our results show that acceleration is a good proxy for swimming activity as it is closely related to tail beat frequency. In addition, we show that heart rate, acceleration and variance of acceleration all can be used as predictors for metabolic rate. Accelerometry based data, especially variance of acceleration, significantly explain some of the variation in venous partial pressure of O2, blood lactate and plasma cortisol concentration. Variance of acceleration also significantly explains some of the variation in pH and mean corpuscular hemoglobin concentration. These relationships are explained by variance of acceleration being a good indicator of the onset of burst-swimming activity, which is often followed by acid-base imbalances and release of catecholamines. The results herein indicate that bio-logger data can be used to extrapolate a range of stress-related physiological events when these are accompanied by increases in activity and highlight the great potential of biosensors for monitoring fish welfare. Biologger Acceleration Heart rate Stress MetabolismpublishedVersio

    Short-day photoperiods affect expression of genes related to dormancy and freezing tolerance in Norway spruce seedlings

    Get PDF
    Key message: Gene expression analysis showed that prolonged short day (SD) treatment deepened dormancy and stimulated development of freezing tolerance of Picea abies seedlings. Prolonged SD treatment also caused later appearance of visible buds in autumn, reduced risks for reflushing, and promoted earlier spring bud break. Context: Short day (SD) treatment of seedlings is a common practice in boreal forest tree nurseries to regulate shoot growth and prepare the seedlings for autumn planting or frozen storage. Aims The aim of this study was to examine responses of Norway spruce (Picea abies (L.) Karst.) to a range of SD treatments of different length and evaluate gene expression related to dormancy induction and development of freezing tolerance. Methods: The seedlings were SD treated for 11 h a day during 7, 14, 21, or 28 days. Molecular tests were performed, and the expression profiles of dormancy and freezing tolerance- related genes were analyzed as well as determination of shoot growth, bud set, bud size, reflushing, dry matter content, and timing of spring bud break. Results: The 7-day SD treatment was as effective as longer SD treatments in terminating apical shoot growth. However, short (7 days) SD treatment resulted in later activation of dormancy-related genes and of genes related to freezing tolerance compared to the longer treatments which had an impact on seedling phenology. Conclusion: Gene expression analysis indicated an effective stimulus of dormancy-related genes when the SD treatment is prolonged for at least 1-2 weeks after shoot elongation has terminated and that seedlings thereafter are exposed to ambient outdoor climate conditions

    Evaluating methods for storability assessment and determination of vitality status of container grown Norway spruce transplants after frozen storage

    No full text
    Autumn sown small seedlings for later transplanting into large containers have been introduced in Swedish forest tree nurseries. Containerized transplants of Norway spruce (Picea abies (L.) Karst.) from three Swedish nurseries were frozen stored during the autumn of 2014 to find out storability and post-storage vitality. Seedling storability was determined by measuring electrolyte leakage after freezing shoots to −25°C (SELdiff−25), by measurements of dry matter content (DMC) of seedling shoots and by the commercial molecular test ColdNSureℱ. Vitality of seedlings after storage was determined by measuring the leakage of electrolytes from shoots (SEL), and seedlings were also tested in regrowth tests. All three methods for storability assessment gave similar predictions, except in one case where DMC showed “not storable” for successfully stored seedlings. Our results indicated that young transplants can be successfully short term stored before reaching the target levels for safe long-term storage of conventional seedlings. Early storage of young transplants resulted in low post-storage survival and vitality expressed as root growth capacity and shoot electrolyte leakage (SEL). A prolonged duration in storage generally resulted in lower survival as well as lower root growth capacity and higher levels of SEL, especially for seedlings stored at earlier dates.
    corecore