14 research outputs found

    Data-based Therapy Recommender Systems

    Get PDF
    Für viele Krankheitsbilder und Indikationen ist ein breites Spektrum an Arzneimitteln und Arzneimittelkombinationen verfügbar. Darüber hinaus stellen Therapieziele oft Kompromisse zwischen medizinischen Zielstellungen und Präferenzen und Erwartungen von Patienten dar, um Zufriedenheit und Adhärenz zu gewährleisten. Die Auswahl der optimalen Therapieoption kann daher eine große Herausforderung für den behandelnden Arzt darstellen. Klinische Entscheidungsunterstützungssysteme, die Wirksamkeit oder Risiken unerwünschter Arzneimittelwirkung für Behandlungsoptionen vorhersagen, können diesen Entscheidungsprozess unterstützen und \linebreak Leitlinien-basierte Empfehlungen ergänzen, wenn Leitlinien oder wissenschaftliche Literatur fehlen oder ungeeignet sind. Bis heute sind keine derartigen Systeme verfügbar. Im Rahmen dieser Arbeit wird die Anwendung von Methoden aus der Domäne der Recommender Systems (RS) und des Maschinellen Lernens (ML) in solchen Unterstützungssystemen untersucht. Aufgrund ihres erfolgreichen Einsatzes in anderen Empfehlungssystemen und der einfachen Interpretierbarkeit werden zum einen Nachbarschafts-basierte Collaborative Filter (CF) an die besonderen Anforderungen und Herausforderungen der Therapieempfehlung angepasst. Zum anderen werden ein Modell-basierter CF-Ansatz (SLIM) und ein ML Algorithmus (GBM) erprobt. Alle genannten Ansätze werden anhand eines exemplarischen Therapieempfehlungssystems evaluiert, das auf die Behandlung der Autoimmunkrankheit Psoriasis abzielt. Um das Risiko der Empfehlung kontraindizierter oder gar gesundheitsgefährdender Medikamente zu reduzieren, werden Regeln aus evidenzbasierten Leitlinien und Expertenempfehlungen implementiert, um solche Therapieoptionen aus den Empfehlungslisten herauszufiltern. Insbesondere die Nachbarschafts-basierten CF-Algorithmen zeigen insgesamt kleine durchschnittliche Abweichungen zwischen geschätztem und tatsächlichem Therapie-Outcome. Auch die aus den Outcome-Schätzungen abgeleiteten Empfehlungen zeigen eine hohe Übereinstimmung mit der tatsächlich angewandten Behandlung. Die Modell-basierten Ansätze sind den Nachbarschafts-basierten Ansätzen insgesamt unterlegen, was auf den begrenzten Umfang der verfügbaren Trainingsdaten zurückzuführen ist und die Generalisierungsfähigkeit der Modelle erschwert. Im Vergleich mit menschlichen Experten sind alle untersuchten Algorithmen jedoch hinsichtlich Übereinstimmung mit der tatsächlich angewandten Therapie unterlegen. Eine objektive und effiziente Bewertung des Behandlungserfolgs kann als Voraussetzung für ein erfolgreiches ``Krankheitsmanagement'' angesehen werden. Daher wird in weiteren Untersuchungen für ausgwählten klinische Anwendungen der Einsatz von ML Methoden zur automatischen Quantifizierung von Gesunheitszustand und Therapie-Outcome erprobt. Zusätzlich, als weitere Quelle für Informationen über Therapiewirksamkeiten, wird der Einsatz von Sentiment Analysis Methoden zur Extraktion solcher Informationen aus Medikamenten-Bewertungen untersucht.Under most medical conditions and indications, a great variety of pharmaceutical drugs and drug combinations are available. Beyond that, trade-offs need to be found between the medical requirements and the patients' preferences and expectations in order to support patients’ satisfaction and adherence to treatments. As a consequence, the selection of an optimal therapy option for an individual patient poses a challenging task to prescribers. Clinical Decision Support Systems (CDSSs), which predict outcome as effectiveness and risk of adverse effects for available treatment options, can support this decision-making process and complement guideline-based decision-making where evidence from scientific literature is missing or inappropriate. To date, no such systems are available. Within this work, the application of methods from the Recommender Systems (RS) domain and Machine Learning (ML) in such decision support systems is studied. Due to their successful application in other recommender systems and good interpretability, neighborhood-based CF algorithms are transferred to the medical domain and are adapted to meet the requirements and challenges of the therapy recommendation task. Moreover, a model-based CF method (SLIM) and a state of the art ML algorithm (GBM) are employed. All algorithms are evaluated in an exemplary therapy recommender system, targeting the treatment of the autoimmune skin disease Psoriasis. In order to reduce the risk of recommending contraindicated or even health-endangering drugs, rules derived from evidence-based guidelines and expert recommendations are implemented to filter such options from the recommendation lists. Especially the neighborhood-based CF algorithms show small average errors between estimated and observed outcome. Also, the recommendations derived from outcome estimates show high agreement with the ground truth. The performance of both model-based approaches is inferior to the neighborhood-based recommender. This is primarily assumed to be due to the limited training data sizes, which renders generalizability of the learned models difficult. Compared with recommendations provided by various experts, all proposed approaches are, however, inferior in terms of agreement with the ground truth. An objective and efficient assessment of treatment response can be regarded a prerequisite for successful ``disease management''. Therefore, the use of ML methods for the automatic quantification of health status and therapy outcome for selected clinical applications is investigated in further experiments. Moreover, as additional source of information about drug effectiveness, the use of Sentiment Analysis, in order to extract such information from drug reviews, is investigated

    Data-based Therapy Recommender Systems

    No full text
    Für viele Krankheitsbilder und Indikationen ist ein breites Spektrum an Arzneimitteln und Arzneimittelkombinationen verfügbar. Darüber hinaus stellen Therapieziele oft Kompromisse zwischen medizinischen Zielstellungen und Präferenzen und Erwartungen von Patienten dar, um Zufriedenheit und Adhärenz zu gewährleisten. Die Auswahl der optimalen Therapieoption kann daher eine große Herausforderung für den behandelnden Arzt darstellen. Klinische Entscheidungsunterstützungssysteme, die Wirksamkeit oder Risiken unerwünschter Arzneimittelwirkung für Behandlungsoptionen vorhersagen, können diesen Entscheidungsprozess unterstützen und \linebreak Leitlinien-basierte Empfehlungen ergänzen, wenn Leitlinien oder wissenschaftliche Literatur fehlen oder ungeeignet sind. Bis heute sind keine derartigen Systeme verfügbar. Im Rahmen dieser Arbeit wird die Anwendung von Methoden aus der Domäne der Recommender Systems (RS) und des Maschinellen Lernens (ML) in solchen Unterstützungssystemen untersucht. Aufgrund ihres erfolgreichen Einsatzes in anderen Empfehlungssystemen und der einfachen Interpretierbarkeit werden zum einen Nachbarschafts-basierte Collaborative Filter (CF) an die besonderen Anforderungen und Herausforderungen der Therapieempfehlung angepasst. Zum anderen werden ein Modell-basierter CF-Ansatz (SLIM) und ein ML Algorithmus (GBM) erprobt. Alle genannten Ansätze werden anhand eines exemplarischen Therapieempfehlungssystems evaluiert, das auf die Behandlung der Autoimmunkrankheit Psoriasis abzielt. Um das Risiko der Empfehlung kontraindizierter oder gar gesundheitsgefährdender Medikamente zu reduzieren, werden Regeln aus evidenzbasierten Leitlinien und Expertenempfehlungen implementiert, um solche Therapieoptionen aus den Empfehlungslisten herauszufiltern. Insbesondere die Nachbarschafts-basierten CF-Algorithmen zeigen insgesamt kleine durchschnittliche Abweichungen zwischen geschätztem und tatsächlichem Therapie-Outcome. Auch die aus den Outcome-Schätzungen abgeleiteten Empfehlungen zeigen eine hohe Übereinstimmung mit der tatsächlich angewandten Behandlung. Die Modell-basierten Ansätze sind den Nachbarschafts-basierten Ansätzen insgesamt unterlegen, was auf den begrenzten Umfang der verfügbaren Trainingsdaten zurückzuführen ist und die Generalisierungsfähigkeit der Modelle erschwert. Im Vergleich mit menschlichen Experten sind alle untersuchten Algorithmen jedoch hinsichtlich Übereinstimmung mit der tatsächlich angewandten Therapie unterlegen. Eine objektive und effiziente Bewertung des Behandlungserfolgs kann als Voraussetzung für ein erfolgreiches ``Krankheitsmanagement'' angesehen werden. Daher wird in weiteren Untersuchungen für ausgwählten klinische Anwendungen der Einsatz von ML Methoden zur automatischen Quantifizierung von Gesunheitszustand und Therapie-Outcome erprobt. Zusätzlich, als weitere Quelle für Informationen über Therapiewirksamkeiten, wird der Einsatz von Sentiment Analysis Methoden zur Extraktion solcher Informationen aus Medikamenten-Bewertungen untersucht.Under most medical conditions and indications, a great variety of pharmaceutical drugs and drug combinations are available. Beyond that, trade-offs need to be found between the medical requirements and the patients' preferences and expectations in order to support patients’ satisfaction and adherence to treatments. As a consequence, the selection of an optimal therapy option for an individual patient poses a challenging task to prescribers. Clinical Decision Support Systems (CDSSs), which predict outcome as effectiveness and risk of adverse effects for available treatment options, can support this decision-making process and complement guideline-based decision-making where evidence from scientific literature is missing or inappropriate. To date, no such systems are available. Within this work, the application of methods from the Recommender Systems (RS) domain and Machine Learning (ML) in such decision support systems is studied. Due to their successful application in other recommender systems and good interpretability, neighborhood-based CF algorithms are transferred to the medical domain and are adapted to meet the requirements and challenges of the therapy recommendation task. Moreover, a model-based CF method (SLIM) and a state of the art ML algorithm (GBM) are employed. All algorithms are evaluated in an exemplary therapy recommender system, targeting the treatment of the autoimmune skin disease Psoriasis. In order to reduce the risk of recommending contraindicated or even health-endangering drugs, rules derived from evidence-based guidelines and expert recommendations are implemented to filter such options from the recommendation lists. Especially the neighborhood-based CF algorithms show small average errors between estimated and observed outcome. Also, the recommendations derived from outcome estimates show high agreement with the ground truth. The performance of both model-based approaches is inferior to the neighborhood-based recommender. This is primarily assumed to be due to the limited training data sizes, which renders generalizability of the learned models difficult. Compared with recommendations provided by various experts, all proposed approaches are, however, inferior in terms of agreement with the ground truth. An objective and efficient assessment of treatment response can be regarded a prerequisite for successful ``disease management''. Therefore, the use of ML methods for the automatic quantification of health status and therapy outcome for selected clinical applications is investigated in further experiments. Moreover, as additional source of information about drug effectiveness, the use of Sentiment Analysis, in order to extract such information from drug reviews, is investigated

    Data-based Therapy Recommender Systems

    No full text
    Für viele Krankheitsbilder und Indikationen ist ein breites Spektrum an Arzneimitteln und Arzneimittelkombinationen verfügbar. Darüber hinaus stellen Therapieziele oft Kompromisse zwischen medizinischen Zielstellungen und Präferenzen und Erwartungen von Patienten dar, um Zufriedenheit und Adhärenz zu gewährleisten. Die Auswahl der optimalen Therapieoption kann daher eine große Herausforderung für den behandelnden Arzt darstellen. Klinische Entscheidungsunterstützungssysteme, die Wirksamkeit oder Risiken unerwünschter Arzneimittelwirkung für Behandlungsoptionen vorhersagen, können diesen Entscheidungsprozess unterstützen und \linebreak Leitlinien-basierte Empfehlungen ergänzen, wenn Leitlinien oder wissenschaftliche Literatur fehlen oder ungeeignet sind. Bis heute sind keine derartigen Systeme verfügbar. Im Rahmen dieser Arbeit wird die Anwendung von Methoden aus der Domäne der Recommender Systems (RS) und des Maschinellen Lernens (ML) in solchen Unterstützungssystemen untersucht. Aufgrund ihres erfolgreichen Einsatzes in anderen Empfehlungssystemen und der einfachen Interpretierbarkeit werden zum einen Nachbarschafts-basierte Collaborative Filter (CF) an die besonderen Anforderungen und Herausforderungen der Therapieempfehlung angepasst. Zum anderen werden ein Modell-basierter CF-Ansatz (SLIM) und ein ML Algorithmus (GBM) erprobt. Alle genannten Ansätze werden anhand eines exemplarischen Therapieempfehlungssystems evaluiert, das auf die Behandlung der Autoimmunkrankheit Psoriasis abzielt. Um das Risiko der Empfehlung kontraindizierter oder gar gesundheitsgefährdender Medikamente zu reduzieren, werden Regeln aus evidenzbasierten Leitlinien und Expertenempfehlungen implementiert, um solche Therapieoptionen aus den Empfehlungslisten herauszufiltern. Insbesondere die Nachbarschafts-basierten CF-Algorithmen zeigen insgesamt kleine durchschnittliche Abweichungen zwischen geschätztem und tatsächlichem Therapie-Outcome. Auch die aus den Outcome-Schätzungen abgeleiteten Empfehlungen zeigen eine hohe Übereinstimmung mit der tatsächlich angewandten Behandlung. Die Modell-basierten Ansätze sind den Nachbarschafts-basierten Ansätzen insgesamt unterlegen, was auf den begrenzten Umfang der verfügbaren Trainingsdaten zurückzuführen ist und die Generalisierungsfähigkeit der Modelle erschwert. Im Vergleich mit menschlichen Experten sind alle untersuchten Algorithmen jedoch hinsichtlich Übereinstimmung mit der tatsächlich angewandten Therapie unterlegen. Eine objektive und effiziente Bewertung des Behandlungserfolgs kann als Voraussetzung für ein erfolgreiches ``Krankheitsmanagement'' angesehen werden. Daher wird in weiteren Untersuchungen für ausgwählten klinische Anwendungen der Einsatz von ML Methoden zur automatischen Quantifizierung von Gesunheitszustand und Therapie-Outcome erprobt. Zusätzlich, als weitere Quelle für Informationen über Therapiewirksamkeiten, wird der Einsatz von Sentiment Analysis Methoden zur Extraktion solcher Informationen aus Medikamenten-Bewertungen untersucht.Under most medical conditions and indications, a great variety of pharmaceutical drugs and drug combinations are available. Beyond that, trade-offs need to be found between the medical requirements and the patients' preferences and expectations in order to support patients’ satisfaction and adherence to treatments. As a consequence, the selection of an optimal therapy option for an individual patient poses a challenging task to prescribers. Clinical Decision Support Systems (CDSSs), which predict outcome as effectiveness and risk of adverse effects for available treatment options, can support this decision-making process and complement guideline-based decision-making where evidence from scientific literature is missing or inappropriate. To date, no such systems are available. Within this work, the application of methods from the Recommender Systems (RS) domain and Machine Learning (ML) in such decision support systems is studied. Due to their successful application in other recommender systems and good interpretability, neighborhood-based CF algorithms are transferred to the medical domain and are adapted to meet the requirements and challenges of the therapy recommendation task. Moreover, a model-based CF method (SLIM) and a state of the art ML algorithm (GBM) are employed. All algorithms are evaluated in an exemplary therapy recommender system, targeting the treatment of the autoimmune skin disease Psoriasis. In order to reduce the risk of recommending contraindicated or even health-endangering drugs, rules derived from evidence-based guidelines and expert recommendations are implemented to filter such options from the recommendation lists. Especially the neighborhood-based CF algorithms show small average errors between estimated and observed outcome. Also, the recommendations derived from outcome estimates show high agreement with the ground truth. The performance of both model-based approaches is inferior to the neighborhood-based recommender. This is primarily assumed to be due to the limited training data sizes, which renders generalizability of the learned models difficult. Compared with recommendations provided by various experts, all proposed approaches are, however, inferior in terms of agreement with the ground truth. An objective and efficient assessment of treatment response can be regarded a prerequisite for successful ``disease management''. Therefore, the use of ML methods for the automatic quantification of health status and therapy outcome for selected clinical applications is investigated in further experiments. Moreover, as additional source of information about drug effectiveness, the use of Sentiment Analysis, in order to extract such information from drug reviews, is investigated

    Neighborhood Optimization for Therapy Decision Support

    Get PDF
    This work targets the development of a neighborhood-based Collaborative Filtering therapy recommender system for clinical decision support. The proposed algorithm estimates outcome of pharmaceutical therapy options in order to derive recommendations. Two approaches, namely a Relief-based algorithm and a metric learning approach are investigated. Both adapt similarity functions to the underlying data in order to determine the neighborhood incorporated into the filtering process. The implemented approaches are evaluated regarding the accuracy of the outcome estimations. The metric learning approach can outperform the Relief-based algorithms. It is, however, inferior regarding explainability of the generated recommendations

    A drug recommender system for the treatment of hypertension

    No full text
    Abstract Background One third (20% to 30%) of patients suffering from hypertension show increased blood pressure resistant to treatment. This resistance often has multifactorial causes, like therapeutic inertia and inappropriate medication but also poor patient adherence. Evidence-based guidelines aim to support appropriate health care decisions. However, (i) research and appraisal of clinical guidelines is often not practicable in daily routine care and (ii) guidelines alone are often insufficient to make suitable and personalized treatment decisions. Shared decision-making (SDM) can significantly improve patient adherence, but is also difficult to implement in routine care due to time constraints. Methods Clinical Decision Support Systems (CDSSs), designed to support clinical decision-making by providing explainable and personalized treatment recommendations, are expected to remedy the aforementioned issues. In this work we describe a digital recommendation system for the pharmaceutical treatment of hypertension and compare its recommendations with clinical experts. The proposed therapy recommender algorithm combines external evidence (knowledge-based) – derived from clinical guidelines and drugs’ professional information – with information stored in routine care data (data-based) – derived from 298 medical records and 900 doctor-patient contacts from 7 general practitioners practices. The developed Graphical User Interface (GUI) visualizes recommendations along with personalized treatment information and intents to support SDM. The CDSS was evaluated on 23 artificial test patients (case vignettes), by comparing its output with recommendations from five specialized physicians. Results The results show that the proposed algorithm provides personalized treatment recommendations with large agreement with clinical experts. This is true for agreement with all experts (agree_all), with any expert (agree_any), and with the majority vote of all experts (agree_majority). The performance of a solely data-based approach can be additionally improved by applying evidence-based rules (external evidence). When comparing the achieved results (agree_all) with the inter-rater agreement among experts, the CDSS’s recommendations partly agree more often with the experts than the experts among each other. Conclusion Overall, the feasibility and performance of medication recommendation systems for the treatment of hypertension could be shown. The major challenges when developing such a CDSS arise from (i) the availability of sufficient and appropriate training and evaluation data and (ii) the absence of standardized medical knowledge such as computerized guidelines. If these challenges are solved, such treatment recommender systems can support physicians with exploiting knowledge stored in routine care data, help to comply with the best available clinical evidence and increase the adherence of the patient by reducing site-effects and individualizing therapies
    corecore