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Kurzfassung

Für viele Krankheitsbilder und Indikationen ist ein breites Spektrum an Arzneimitteln und Ar-

zneimittelkombinationen verfügbar. Darüber hinaus stellen Therapieziele oft Kompromisse zwis-

chen medizinischen Zielstellungen und Präferenzen und Erwartungen von Patienten dar, um Zu-

friedenheit und Adhärenz zu gewährleisten. Die Auswahl der optimalen Therapieoption kann da-

her eine große Herausforderung für den behandelnden Arzt darstellen. Klinische Entscheidung-

sunterstützungssysteme, die Wirksamkeit oder Risiken unerwünschter Arzneimittelwirkung für

Behandlungsoptionen vorhersagen, können diesen Entscheidungsprozess unterstützen und

Leitlinien-basierte Empfehlungen ergänzen, wenn Leitlinien oder wissenschaftliche Literatur

fehlen oder ungeeignet sind. Bis heute sind keine derartigen Systeme verfügbar. Im Rahmen

dieser Arbeit wird die Anwendung von Methoden aus der Domäne der Recommender Systems

(RS) und des Maschinellen Lernens (ML) in solchen Unterstützungssystemen untersucht.

Aufgrund ihres erfolgreichen Einsatzes in anderen Empfehlungssystemen und der einfachen In-

terpretierbarkeit werden zum einen Nachbarschafts-basierte Collaborative Filter (CF) an die

besonderen Anforderungen und Herausforderungen der Therapieempfehlung angepasst. Zum an-

deren werden ein Modell-basierter CF-Ansatz (SLIM) und ein ML Algorithmus (GBM) erprobt.

Alle genannten Ansätze werden anhand eines exemplarischen Therapieempfehlungssystems eval-

uiert, das auf die Behandlung der Autoimmunkrankheit Psoriasis abzielt. Um das Risiko der

Empfehlung kontraindizierter oder gar gesundheitsgefährdender Medikamente zu reduzieren,

werden Regeln aus evidenzbasierten Leitlinien und Expertenempfehlungen implementiert, um

solche Therapieoptionen aus den Empfehlungslisten herauszufiltern.

Insbesondere die Nachbarschafts-basierten CF-Algorithmen zeigen insgesamt kleine durchschnit-

tliche Abweichungen zwischen geschätztem und tatsächlichem Therapie-Outcome. Auch die aus

den Outcome-Schätzungen abgeleiteten Empfehlungen zeigen eine hohe Übereinstimmung mit

der tatsächlich angewandten Behandlung. Die Modell-basierten Ansätze sind den Nachbarschafts-

basierten Ansätzen insgesamt unterlegen, was auf den begrenzten Umfang der verfügbaren Train-

ingsdaten zurückzuführen ist und die Generalisierungsfähigkeit der Modelle erschwert. Im Ver-

gleich mit menschlichen Experten sind alle untersuchten Algorithmen jedoch hinsichtlich Übere-

instimmung mit der tatsächlich angewandten Therapie unterlegen.

Eine objektive und effiziente Bewertung des Behandlungserfolgs kann als Voraussetzung für ein

erfolgreiches “Krankheitsmanagement” angesehen werden. Daher wird in weiteren Untersuchun-

gen für ausgwählten klinische Anwendungen der Einsatz von ML Methoden zur automatischen

Quantifizierung von Gesunheitszustand und Therapie-Outcome erprobt. Zusätzlich, als weitere

Quelle für Informationen über Therapiewirksamkeiten, wird der Einsatz von Sentiment Analysis

Methoden zur Extraktion solcher Informationen aus Medikamenten-Bewertungen untersucht.
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Abstract

Under most medical conditions and indications, a great variety of pharmaceutical drugs and

drug combinations are available. Beyond that, trade-offs need to be found between the medical

requirements and the patients’ preferences and expectations in order to support patients’ sat-

isfaction and adherence to treatments. As a consequence, the selection of an optimal therapy

option for an individual patient poses a challenging task to prescribers. Clinical Decision Support

Systems (CDSSs), which predict outcome as effectiveness and risk of adverse effects for available

treatment options, can support this decision-making process and complement guideline-based

decision-making where evidence from scientific literature is missing or inappropriate. To date,

no such systems are available. Within this work, the application of methods from the Recom-

mender Systems (RS) domain and Machine Learning (ML) in such decision support systems is

studied.

Due to their successful application in other recommender systems and good interpretability,

neighborhood-based CF algorithms are transferred to the medical domain and are adapted to

meet the requirements and challenges of the therapy recommendation task. Moreover, a model-

based CF method (SLIM) and a state of the art ML algorithm (GBM) are employed. All

algorithms are evaluated in an exemplary therapy recommender system, targeting the treat-

ment of the autoimmune skin disease Psoriasis. In order to reduce the risk of recommending

contraindicated or even health-endangering drugs, rules derived from evidence-based guidelines

and expert recommendations are implemented to filter such options from the recommendation

lists.

Especially the neighborhood-based CF algorithms show small average errors between estimated

and observed outcome. Also, the recommendations derived from outcome estimates show high

agreement with the ground truth. The performance of both model-based approaches is inferior

to the neighborhood-based recommender. This is primarily assumed to be due to the limited

training data sizes, which renders generalizability of the learned models difficult. Compared with

recommendations provided by various experts, all proposed approaches are, however, inferior in

terms of agreement with the ground truth.

An objective and efficient assessment of treatment response can be regarded a prerequisite for

successful “disease management”. Therefore, the use of ML methods for the automatic quan-

tification of health status and therapy outcome for selected clinical applications is investigated

in further experiments. Moreover, as additional source of information about drug effective-

ness, the use of Sentiment Analysis, in order to extract such information from drug reviews, is

investigated.
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all
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1 Introduction

1.1 Background and Motivation

The ability to make accurate and timely diagnostic and treatment decisions can be regarded as

the core skill and the critical aspect of physician performance in medical practice [74, 139]. The

purpose of diagnosis is to classify a patient into a category of patients which are believed to be

similar in terms of clinical symptoms. Based on diagnosis and additional patient risk factors, such

as demographic data and comorbidities, the attending physician is tasked to make an estimation

on the course of the disease and derive management decisions. To do so, natural history of a

disease and response to possible treatment options are predicted for a patient [85]. Outcome,

however, is typically multifactorial [49], meaning that multiple aspects, such as benefits and

harms, are to be considered and also additional factors such as costs and the way of application

determine the treatment decision. Hence, the optimal treatment does not only differ among

patients due to individual diagnosis and patient characteristics but also due to distinctions in

individual patient values and objectives. Precise definition of the targeted outcome [165] and

accurate prognosis are the foundation of optimal treatment decisions.

As health outcomes are probabilistic, clinical problem solving is characterized by making

judgments and decisions under uncertainty [165]. In spite of still being difficult to trace, it is

assumed that there are two distinct cognitive models or processes of clinical reasoning and decid-

ing which are employed individually or complementary: analytical and intuitive reasoning [18,

74, 139, 358]. This distinction is in line with the dual-process theory which describes two sys-

tems of decision-making, the controlled, slow, and conscious System 2 and the fast, automatic,

and non-conscious System 1 [163]. Analytical reasoning, on the one hand, relies on physiolo-

gical and pathophysiological knowledge and is closely related to the hypothetico-deductive model

[358]. This process assumes ideal conditions and tries to remove uncertainty by systematically

incorporating all available information. Heuristics, such as rule sets or decision trees, but also

probabilistic reasoning can be applied. Bayes rule, for examples, calculates the probability of a

disease or outcome by revision of the prevalence of a disease or outcome by including further clin-

ical information. This analytical decision process is regarded as the approach of novices but may

also be employed when diagnoses are rare or difficult [74]. Making decision based on analytical

reasoning only is most often not realizable in practice as too laborious and time-consuming and

due to non-ideal conditions, i.e. the absence of information. Intuitive reasoning, on the other

hand, is regarded as the approach of experienced clinicians as it relies heavily on the experience

of the decision maker. This intuitive approach is based on recognizing patterns in the avail-

able information which are matched against templates to derive decisions (recognition primed

1
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decision making [85]). Those templates develop by integrating clinical knowledge and personal

experience with similar patients. By relying on instinctive first impressions (thin-slicing [9]) and

mental shortcuts (e.g. availability, representativeness and anchoring heuristic [361]), intuitive

decision-making can be very effective and efficient, but is also susceptible to suffer from risks

and cognitive biases [361]. For example, experience is typically biased and especially exceptional

cases can result in wrong decisions. Beyond that, incorporation of new diseases or treatment

options, new evidence and patient values renders difficult if making decision only based on in-

tuitive reasoning. Finally, the underlying reasoning of intuitive decisions is difficult to explain.

As healthcare in general undergoes a shift from paternalistic care to an increasing interest and

desire of patients to participate in decisions (patient empowerment) [321, 165, 20], explainability

becomes an increasingly important factor. Regarding treatment options, physicians not only

need to decide on one treatment but will be requested increasingly to clarify decisions and to

provide detailed prognoses for the full range of options.

Depending on condition and indication, a great variety of pharmaceutical drugs and drug

combinations may be available. Hence, the selection of the potentially most appropriate ther-

apy option for an individual patient may pose a challenging task to prescribers and the reported

uncertainties in turn result in treatment deficits [239, 12]. As was shown, making diagnoses but

also the choice of treatment is often quiet subjective and underlies impacts such as biases [14,

74, 358] but also conflicts of interests [193] and is prone to errors (“To Err is Human” [175]). In

various studies, considerable variability of diagnosis or treatment decisions regarding the same

patient could be demonstrated [165]. A phenomenon that affects not only different physicians

(inter-rater reliability), but also the same physician judging at different times (intra-rater reli-

ability). Assuming one optimal treatment for a patient and time, this variance clearly indicates

that many patients are not treated optimally. The potential outcome of alternatives is, however,

“counterfactual” and unknown. Faulty diagnoses [74] or inappropriate treatment decisions can

even cause “iatrogenic” complications such as medication errors and avoidable Adverse Drug

Events (ADEs) (see figure 1.1) with, in the worst case, health endangering consequences. In

particular, relevant patient characteristics, such as allergies and contraindications, are subject to

be overlooked [366], but also polypharmacy is associated with an increased risk for medication

errors and ADEs (drug-drug interactions) [328, 308]. According to [308], in Germany 57.000

deaths per year are caused by ADEs from which 28.000 are regarded as potentially avoidable.

Responsibility for 81 % of the observed medication errors are with the attending physician.

However, also the occurrence of less serious ADEs and side effects typically reduce adherence,

especially if risks were not previously communicated to the patient. All stated concerns in turn

increase healthcare costs. In the U.S., the number of deaths due to medication errors is estim-

ated to 250.000 per year and hence is the third-most common cause of death according to [213].

Independent of the caused harm, the average cost of medication errors is estimated to 8.000

U.S.-Dollar [67].

To reduce medication errors and remedy the stated inconsistency of treatment choices, Evidence-

based Medicine (EbM) was supposed to supplement a physician’s opinion with the best available

external evidence from the scientific literature. However, with always including the patient’s val-
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Figure 1.1: Relationship between ADEs, preventable ADEs and medication errors [231]. ADEs
judged to be secondary to a main therapeutic effect are termed side effects.

ues and objectives into decisions. “EbM is the conscientious, explicit and judicious use of current

best evidence in making decisions about the care of individual patients. The practice of EbM

requires integration of individual clinical expertise and patient preferences with the best avail-

able external clinical evidence from systematic research” [296]. Hence, the initially introduced

analytical or intuitive clinical decision-making approaches, based on clinical knowledge only or

supplemented by personal experience, are extended by experience from empirical testing [20,

85]. The evidence-based practice comprises (1) the systematical search of the literature target-

ing a specific and well defined clinical problem or objective, (2) a critical assessment of the best

found evidence concerning validity and applicability and (3) finally, estimation of the benefits

and harms for the individual patient by incorporating his or her values and objectives.

To evaluate the scientific significance of the clinical studies described in the literature, six levels

of evidence can be distinguished according to [220] as listed in table 1.1. The higher the ranking

of the evidence class, the broader is its scientific foundation. Studies of class Ia have the highest

evidence, whereas studies of class IV have the lowest. However, it must be noted that there is

no European or international standard for classification.

Though, two counteracting trends hamper the application of evidence-based practice. On the

one hand, the information explosion, i.e. the growing number of clinical studies, which are even

often inconsistent and quickly out-dated [315], makes the application of EbM time consuming

and laborious. Steadily increasing cost pressure and demographic changes, on the other hand,

produce noticeable time constraints in everyday clinical practice. To date, no tools or technical

means are available to automate or support the search for and retrieval of the relevant evid-

ence. Evidence-based guidelines summarize the systematical search and assessment of clinical

literature concerning a specific condition and potential harms and benefits of a treatment. The

intention is to make EbM more readily and time-effectively accessible in clinical practice in order

to improve quality and increase transparency. Committees of experts define recommendations

for everyday decision-making. Depending on the way how consensus among experts is found,

how evidence from published clinical studies is incorporated and the extend of systematics of

the guideline development, four guideline levels are defined according to [15] and summarized

in table 1.2. In contrast to S1 and S2k guidelines, only S2e and S3 guidelines are based on sys-
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Table 1.1: Levels of evidence to assess the scientific significance of clinical studies described in
the literature and associated levels of recommendations [220].

Evidence Recommendation Description

Class Ia A Evidence provided by a systematic review (meta-analyses)
from several methodically high-quality RCTs.

Class Ib A Evidence provided by at least one sufficiently large and
methodically high-quality RCT.

Class IIa B Evidence provided by at least one methodically high-
quality but not randomized controlled trial, e.g. cohort
study.

Class IIb B Evidence provided by at least one methodically high-
quality trial of another type of quasi-experimental trial.

Class III B Evidence provided by one methodically high-quality, non-
experimental descriptive study, as e.g. comparative stud-
ies, correlation studies or case-control studies.

Class IV C Evidence provided by reports of expert committees or ex-
pert opinions or clinical experience of acknowledged au-
thorities.

tematic analysis of evidence from scientific literature. The strength of the guideline suggestions,

i.e. the level of recommendation (A - shall, B - should, C - can), is directly associated with the

evidence class from table 1.1. Guidelines, however, just provide a basic standard intended to give

physicians orientation concerning therapy options but no therapy recommendations. Moreover,

quality of guidelines varies and high quality guidelines are only available for common conditions.

Also regarding easy application and seamless integration into the clinical work process, there

are hardly any technical means available to date.

Table 1.2: Depending on the methodology applied for guideline development, four guideline
classes are distinguished according to [15].

Class Description Method

S3 Evidence- and
consensus-based

Representative committee, systematic search, selection,
literature appraisal, structured consensus finding.

S2e Evidence-based Systematic search, selection, literature appraisal.

S2k Consensus-based Representative committee, structured consensus finding.

S1 Recommendation Informal procedure for consensus finding.

of expert

committees

EbM and guidelines in general are susceptible to further issues. As individual patients’ char-

acteristics typically differ from the strict inclusion criteria which evidence is based on (patient

heterogeneity), there are always exceptions to guidelines and evidence from literature [108, 112,

251]. For specific patients there might even be only inadequate studies available [53]. Lack-

ing generalizability of clinical trials and especially the presence of multimorbidities can lead
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to differing therapy outcome [209, 102] and increases the risk of drug interactions, adverse or

unforeseen effects, or contraindications [50, 328]. These potential differences between clinical

study collectives and real patient collectives, but also long-term effects, are often insufficiently

evaluated before market introduction which makes pharmacovigilance an important process for

drug safety [47]. Furthermore, also study endpoints frequently differ from the patient’s actual

values and objectives. Finally, EbM itself relies on the objectiveness of the available literature.

However, it was shown that clinical studies often underlay conflicts of interests and pharmaceut-

ical industry-sponsored and mixed-funding clinical trials are common [45, 251]. Study results

are reported selectively [54] and favor specific (the sponsor’s) products [30]. Meta-analyses ad-

ditionally are subject to be influenced by a publication bias which favor studies with significant

or positive results [342].

Firstly, to seamlessly integrate the evidence from literature and guidelines into the clinical

work process and make them applicable in everyday clinical practice, appropriate technical

tools are not yet available. Beyond that, however, the selection of patient-specific therapy

options often cannot be provided on the basis of evidence from the literature and guidelines only.

An obvious way to address this challenges is to complement this external evidence by clinical

experience from past patient encounters, which is stored in local or global data bases such as

Electronic Health Records (EHRs). Exploiting such practice-based evidence [321, 112, 197, 120,

53, 209] facilitates to support the attending physician with empirical experience and supplement

external evidence where evidence from literature is missing, inappropriate, or inaccessible. Such

data-based approaches can provide an essential basis for personalized therapy recommendations.

Due to the large data volume, its high dimensionality and complex interdependencies within the

data, however, an efficient integration of the available information cannot be expected from

physicians or other health professionals without aids. Therefore, intelligent Clinical Decision

Support Systems (CDSSs), which assist with exploiting such data to make treatment decisions,

can be expected to play a significant role in future healthcare. Nevertheless, such data-driven

CDSSs are rare in clinical practice to date which can be assumed to be closely related to lacking

trust and interpretability of the underlying algorithms. Especially Recommender Systems (RSs),

which are widely applied in other domains, such as e-commerce or music and movie streaming

services, have many obvious analogies with the therapy recommendation setting an can be

capable of overcoming such issues. Still, methods from RS research are hardly applied in clinical

applications in general or for therapy recommendations in particular.

1.2 Aim of this Work

The overall aim of this work is to provide such a CDSS which supports with the clinical decision-

making task by exploiting information stored in routine care data. The goal is to provide patient-

specific therapy recommendations, i.e. recommendations which are optimized for a given patient

and time considering his or her individual characteristics. These therapy recommendations, in

turn, are expected to overcome uncertainties among health practitioners and improve patient

satisfaction by improving outcome, reducing the risk of ADEs and side effects but also by help-
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ing to avoid medication errors. A transparent and interpretable presentation of multifactorial

outcome predictions, such as potential benefits and harms of therapy options, is supposed to

strengthen confidence in such CDSSs and facilitate participatory decision-making. The incor-

poration of individual patients’ values and objectives thus has the potential to increase patient

adherence to the recommended treatment options.

Overall, this work can be considered as component of a CDSS as schematized in figure 1.2.

This proposed CDSS integrates multiple sources of information such as (collective) clinical exper-

ience stored in health records (practice-based evidence), clinical evidence from scientific literature

(EbM) stored in scientific databases (e.g. Pubmed1), information derived from pharmacovigil-

ance (e.g. Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)2), expert information

(e.g. Rote Liste3, Gelbe Liste4), or advisory platforms (e.g. Embryotox5). However, also patient

reviews captured by online pharmacies or drug rating portals can be included as valuable source

of patient experience e.g. by means of sentiment analysis methods as applied in section 7.4.

This vision of a CDSS implements a closed loop in order to feed back treatment decisions and

outcome, on the one hand, and information on patient preference, on the other hand. This

Interactive Machine Learning (iML) approach [158], encompassing a Doctor-in-the-Loop (DiL),

facilitates a continuously learning therapy recommender system. Suchlike, such a system ideally

continuously improves by extending the clinical experience databases and adapts to applied

research and pharmacovigilance findings.

Figure 1.2: Therapy recommender system framework integrating multiple sources of information
and encompassing a Doctor-in-the-Loop (DiL).

Within this thesis, particularly the development of a data-driven methodology is targeted,

which exploits (phenotypic) patient characteristics and information on outcome of previously

applied treatments. This data is considered to capture (collective) clinical experience concerning

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.bfarm.de/DE/Arzneimittel/Pharmakovigilanz/_node.html
3https://www.rote-liste.de/
4https://www.gelbe-liste.de/
5https://www.embryotox.de/
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therapy options and can be regarded as practice-based evidence. On the basis of this clinical

experience, the response to available drug options are to be modeled and predicted for a given

target patient. These outcome predictions can be finally used to recommend the potentially most

effective therapy options to the user with the lowest risk of ADEs. By means of this approach,

the intention is to support the attending physician with empirical experience and supplement

external evidence. Beyond that, however, such data-based therapy recommendations can also

be expected to open up a new chapter of medicine if developed and evaluated on high-quality

and sufficiently comprehensive data foundations. In order to promote acceptance among prac-

titioners and to enable the extraction of scientific findings and knowledge, special emphasis is

placed on the interpretability and transparency of the methods used.

It is hypothesized that such a data-driven approach is (1) capable of predicting outcome of

treatments and (2) to provide appropriate personalized treatment recommendations which are

in accordance with successful therapies recommended by the attending physician. Moreover,

the hypothesis is made that (3) the proposed approach is, based on the given data, capable

of obtaining at least as good inter-rater reliability with the attending physician than human

experts. In order to assess the validity of the stated hypotheses, three fundamental research

questions can be derived:

1. Is it possible, based on patient data and response of previously applied therapies, to predict

outcome on therapy options for an individual target patient which are more accurate than

the average outcome regarding this treatment option?

2. Is it possible to derive reasonable therapy recommendations from the outcome predictions,

which are more in agreement with the effective recommendations of the treating physician

than the recommendation of therapies according to their general popularity?

3. Is it possible to derive reasonable therapy recommendations from the outcome predictions,

which agree with the effective recommendations of the treating physician to the same

extend as the recommendations of human experts?

Two evaluation criteria (endpoints) of the experiments to be conducted within the scope of

this work can be defined based on the research questions. The primary criterion, associated

with the first research question, is the accuracy of outcome predictions. As an accurate outcome

prediction is the foundation of appropriate therapy recommendation, primary focus is put on

this endpoint in this work. The reference standard of this criterion is the measured outcome of

actually applied therapies. The secondary evaluation criterion, related to the second and third

research question, is the agreement between recommendations derived from outcome predictions

and actually applied therapies, i.e. the recommendations from the attending physician. However,

as the objective is rather to recommend potentially successful therapy options than imitating

the attending physician, the reference standard for the secondary outcome are recommendations

only, which have actually been applied and for which good outcome was observed.
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1.3 Dissertation Outline

Primary objective of this work is the development and evaluation of an exemplary therapy re-

commender system.

Chapter 2 gives a comprehensive overview on the state of the art and the attempt of classi-

fication of CDSSs as well as figures concerning acceptance, application and evaluation of such

systems. Moreover, in this chapter the results of a systematic literature review on Therapy De-

cision Support Systems in general is presented and related works to RSs in the medical domain,

i.e. Health Recommender Systems (HRSs) are discussed.

The exemplarily targeted application of this work is the systemic treatment of the chronic

autoimmune skin disease Psoriasis. Therefore, routine care data from the Clinic and Polyclinic

for Dermatology, University Hospital Dresden, is collected, which is considered to represent

local clinical experience. In chapter 4, a background on Psoriasis is given, the data extraction

and preprocessing procedure is described and some descriptive statistics are given to summar-

ize the available dataset. Preprocessing especially concerns strategies to handle missing values.

Moreover, on a subset of the provided data a study on therapy recommendation inter-rater

reliability is carried out involving dermatologists from different clinics in Germany as experts.

Within this work, various algorithms are developed and evaluated with regard to the above

formulated hypotheses. These approaches are detailed in chapter 3 and their implementations

described in chapter 5. As Collaborative Filters (CFs) are widely applied in other domains to

recommend items, this work transfers methodologies from CF research to the therapy recom-

mendation setting. The stakeholders involved, the definition of preferences and needs to be

met, and the data and metrics used to identify homogeneous patient subgroups require modific-

ations of such methods to be applied in the clinical domain. Additionally, also state of the art

Machine Learning (ML) algorithms are adapted to the problem at hand to derive therapy re-

commendations. Finally, the proposed therapy recommender system incorporates an additional

post-filtering layer which implements evidence-based and expert-based exclusion rules to reduce

the risk of inappropriate or even harmful recommendations as also detailed in chapter 5.

The performance of the proposed algorithms and system variants is evaluated and compared in

terms of prediction accuracy and recommendation quality in chapter 6. Moreover, in order to

answer the research questions from above, the proposed recommender system’s performance is

compared with baseline results and with the recommendations of human experts on a subset of

the available data.

Chapter 7 summarizes additional own studies, which intend to path the way for further ap-

plications and extensions of the proposed therapy recommender system approach. On the one

hand, quantification of health status and outcome based on raw vital signs for various conditions

is studied. On the other hand, sentiment analysis methods are applied to patient reviews to

automatically assess experience with applied treatments.

In chapter 8, finally, the demonstrated results are discussed and practical recommendations

for further applications are derived. Moreover, the overall work is summarized, limitations are

named and potential future works and extensions derived.
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In the following chapter, state of the art and related works are analyzed. Initially, an over-

view on definitions, background and scientific directions related to CDSSs in general are given.

Hereafter, the findings of a systematic literature review, to identify related works dealing with

CDSSs targeting treatment and therapy recommendations, are presented. Finally, an overview

of regulatory considerations regarding therapy recommender systems is given.

2.1 Clinical Decision Support Systems

2.1.1 Definitions and Taxonomies

CDSS are broadly defined as computer systems which are designed to aid clinical decision-

making by providing patient-specific assessments or recommendations at the point in time that

these decisions are made [29, 343]. Research on CDSSs in general has emerged from earlier

Artificial Intelligence research, which aimed to design computer programs to simulate human

decision-making (INTERNIST-I [224], MYCIN [317], DXplain [19]) and already dates back to

the 1970ies. Today, there is a large variety of CDSS described in the literature which also vary

greatly in design, function, and use. In the following, some proposed general taxonomies are

summarized.

An initial categorization of CDSSs was introduced in [318], which distinguished three ba-

sic types: (1) Information-management models, to provide information on patients or clinical

knowledge, e.g. access to literature and educational material, (2) Situation-awareness models, to

help clinical practitioners to focus attention on specific data, e.g. drug-drug-interaction, and (3)

Patient-data models, to provide recommendations and customized information on an individual

patient, e.g. guide diagnosis or treatment decisions.

The authors of [121], a review on effects of CDSS on health practitioner performance and patient

outcomes, categorize the CDSS included into their study according to the clinical task they are

supposed to support the physician with: (1) systems for diagnosis, (2) reminder systems for

prevention, (3) systems for disease management, and (4) systems for drug dosing and drug pre-

scribing.

In [386] a more detailed taxonomy of CDSS is studied and summarized. Here, CDSS are categor-

ized into six distinct types: (1) Medication dosing support, to provide patient-specific drug or

dosage recommendations, (2) Order facilitators, to support selecting appropriate diagnosis and

treatment ordering, e.g. by providing order set templates, (3) Point-of-care alerts/reminders,

e.g. to provide information about drug-drug interactions, (4) Relevant information display, to

provide patient-specific data, (5) Expert systems, to provide complex decision support which
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combines patient characteristics with other electronically available data, e.g. diagnostic or ther-

apy suggestions, and (6) Workflow support, to provide tools such as process templates.

[29] and [255] distinguish CDSS approaches according to their implementation properties into

knowledge-based and non-knowledge-based [29] or knowledge-based and intelligent computing sys-

tems [255], respectively.

Knowledge-based CDSSs, also known as expert systems, usually comprise three components.

An inference or reasoning engine (1) extracts relevant information from a knowledge base (2),

which is then communicated to the user via a communication interface (3). The underlaying

knowledge-bases typically consist of compiled rules or probabilistic associations. The inference

mechanism combines these rules or associations with actual patient data. The purpose of the

communication mechanism is to input patient data into the system, either entered directly by

the user or automatically extracted from EHR or other electronic data sources, and to output

results to the user. [29, 7]

Non-knowledge-based CDSSs, or intelligent computing systems, on the other hand, typically

apply machine learning or other statistical pattern recognition methods to automatically learn

from past experiences stored in the clinical data [29, 255]. Such approaches rely on the extensive

developments in pattern recognition and machine learning research. Here, no manually encoded

expert or domain knowledge is needed. However, such systems require large amounts of data

to build reliable models from, which facilitate to generalize sufficiently well on unseen cases.

Furthermore, in comparison to rule-based and probabilistic approaches, such machine learning

and pattern recognition approaches are often hardly interpretable and decisions not justified.

However, insight into the decision-making process was reported to be important factor regarding

acceptance of such systems [29].

2.1.2 Electronic Health Records

As introduced in chapter 1, healthcare decisions usually incorporate a wide range of potentially

relevant data about a patient. However, as outlined above, also computer-based CDSS intended

to facilitate patient-specific decision support require information about patient characteristics

[29]. Manual data entry, as required by stand-alone systems, disrupts the patient care process, is

time consuming, and subject to erroneous inputs, which limits usefulness and acceptance of such

CDSS. Consequently, CDSS ideally use data already entered into an EHR, Hospital Information

System (HIS), Laboratory Information Management System (LIMS), Computerized Physician

Order Entry (CPOE) systems as detailed below, or even are capable of accessing additional

sources with health related data [29].

In Germany, §10 of the professional code ((Muster-)Berufsordnung) of physicians working in

Germany [281] urges practitioners to document diagnoses and treatment processes. Such records

contain valuable information about medical knowledge and experience. In this context, especially

EHRs can facilitate integration of multiple data sources, data exchange, and a reduction of

documentation errors if data is provided in standardized formats [142]. Beyond that, selective

retrieval of relevant information and automatic data processing open up new opportunities for

data-driven CDSS [142, 120]. To date, however, EHRs mostly serve to digitize and manage
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information rather than to leverage it and most data remains unused.

Missing data, high-dimensionality, noise, heterogeneity, diverse attribute scales, and often un-

structured data is pervasive in the context of clinical data and hence in EHRs. Transforming data

into a structured and standardized format, however, is not always easily possible. Especially,

standardizing vocabulary [29] and integrating multiple data sources [53] is often challenging.

Thought, concerning unstructured data as clinical notes, recent developments in Natural Lan-

guage Processing (NLP), text mining, and machine learning techniques promise to facilitate

powerful algorithms converting such data into standardized representation [120, 197, 316].

2.1.3 Computerized Physician Order Entry Systems

The motivation for the development of CDSS is application dependent. However, prevention

of medical errors and improved patient safety can be regarded as the most important issues

addressed with CDSS [25, 321, 21]. As the focus of this thesis is on pharmaceutical therapy

recommendations, CDSS intended to prevent ADEs caused by inappropriate medication, dosage,

duration or drug-drug interactions are of special interest. In this context, especially the coupling

of CPOE systems with CDSS, also denoted as CPOE-CDSS, have shown to reduce the number

of medication errors and preventable ADEs [308] and are closely linked to CDSS research [25,

175]. CPOE systems facilitate electronic entry and communication of instructions concerning

patient treatment, such as pharmaceutical orderings, and have several advantages over manual,

hand written ordering. Computer-based orders are typically communicated instantly, more

legibly, accurately, and completely [385, 366, 308]. A CPOE system coupled with decision

support can additionally improve safety of medication orders by considering individual patient

characteristics and current medications but also assure compliance with guidelines and evidence-

based knowledge sources. [29, 366]

In [366] such medication-related CDSSs are divided into two stages, i.e. basic and advanced

decision support. Basic decision support includes features as drug-allergy checking, basic dosing

and administration frequency guidance, formulary compliance checking (i.e. whether the selected

medications comply with the institutional medication preferences), duplicate therapy checking

(i.e. duplication of medications with similar therapeutic effects), and drug–drug interaction

checking. Advanced decision support include features as advanced medication dosing, which take

more detailed case variations into account (e.g. indication for the drug, patient characteristics,

comorbidities, other medications the patient may be currently taking, or the patient’s previous

response to the drug), advanced guidance for medication-associated laboratory testing, which

assist physicians with medication monitoring (e.g. monitoring related physiological parameters

or drug levels), advanced checking of drug disease interactions and contraindications, which take

comorbidities and other patient related conditions along with an adequate knowledge-base of

drug–disease contraindication into account, and advanced drug–pregnancy alerting, which take

potential pregnancy into account and evaluates potential contraindication.
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2.1.4 Evidence-based Medicine

The development of CDSSs is also closely related to EbM. EbM, i.e. the practice of medi-

cine based on the best available scientific literature, was widely promoted to improve clinical

outcomes. Nevertheless, as also mentioned in chapter 1, EbM remains difficult to be actually

practiced by physicians hampers EbM’s implementation in most medical domains. One reason

is the extensive quantity, complexity and dynamics of clinical research which constitute a great

challenge for health practitioners. In order to make evidence-based medicine applicable in prac-

tice and to support real-time decision-making at the point-of-care, EbM must be seamlessly

integrated into the workflow without causing any interruptions and requiring additional efforts.

[29, 25]

The application of clinical guidelines, which intend to summarize the available scientific evid-

ence, has shown to be beneficial for improved quality in practiced medicine. However, in spite of

the wide acceptance and recognition of importance of evidence-based guidelines, clinicians are

often not familiar with written guidelines and often apply them inappropriately during the actual

care process [81]. On the one hand, the implementation of formalized clinical guidelines in CDSS

promise to improve their acceptance and application, and hence the practice of EbM in the daily

clinical routine [81, 217]. Approaches for development and implementation of computer-based

guidelines are reviewed and compared in [81]. Several aspects are addressed, as guideline rep-

resentation, acquisition, and verification but also consideration about execution and application

of computer-interpretable guidelines are discussed.

On the other hand, the application of CDSS that help to retrieve and summarize patient-specific

evidence-based information from the available scientific literature (evidence-based decision sup-

port) is assumed to substantially contribute to facilitate the practice of EbM and improve quality

of health care [29, 321, 21, 168]. As mentioned in chapter 1, one major challenge concerning the

application of EbM and clinical guidelines is to keep up with growing number of clinical stud-

ies. CDSS can help to automate literature search and appraisal in order to extract the relevant

information and keep a knowledge-base update. Advances in NLP techniques in the medical

domain are noteworthy [360, 249]. Such methods promise to support or automate systematic

reviews (Living Review [100]) and efforts to encounter the challenge of keeping guidelines up to

date (Living Guideline [6]).

2.1.5 Practice-based Evidence

As also motivated in chapter 1, selection of a patient-specific and personalized therapy options

often cannot be provided on the basis of evidence from the literature and guidelines only. Vari-

ous authors propose to complement this external evidence by local or global, practice-based

evidence for individual and site-specific clinical decision-making [321, 112, 197, 120, 53, 209].

This approach involves systematic analysis, assessment and presentation of such local or global

observational experience [209]. The intention is to provide decision support especially in cases

where study evidence is lacking or inadequate (Classes I - III) and expert committees (Class

IV) are not accessible of fail to find a consensus. One straightforward approach is to mimic a
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personalized observational study by dynamically identifying a subgroup of similar patients in

the database of past patient encounters [112, 197, 120]. Such virtual cohorts of similar patients

can be assumed to be more likely to represent a realistic population with similar characteristics

than those assembled for clinical trials [120]. Clinicians using an EHR ideally generate such

practice-based evidence as a by-product of routine care.

In [209], a Green Button is proposed which provides real-time and personalized practice-based

evidence in the form of comparative effectiveness information for every patient at every visit

[209] as visualized in figure 2.1. Such an approach was shown to be successfully applied in [112]

using EHR data. Prerequisites, however, are correct identification of homogeneous subgroups

[102] and sufficiently large data foundations to draw valid statistical conclusions and to guaran-

tee acceptable power [120]. Nevertheless, such approaches can be able to lower uncertainties and

increase transparency, as the underlaying data is accessible, and the in chapter 1 stated issues

related to lacking objectivity of studies and meta-analyses can be counteracted. Moreover, such

an approach can enable physicians to learn from each case by generation of new knowledge about

the effectiveness of treatments and the prediction of outcomes [307].

However, the needed balance and caution when supplementing literature-based evidence with

practice-based evidence in the clinical decision-making process is emphasized [351]. Drawing

comparative inferences from observational research is also associated with risks such as the

potential for unmeasured confounding and selection bias. As patients are not randomized to

treatments, comparisons between treatment groups are subject to bias due to patient and phys-

ician factors that influence treatment selection [102]. Consequently, such approaches should

not be intended to replace clinical judgment but rather increase the information available for

physicians to be able to make accurate decisions [290].

The authors of [321] define the notion of evidence-adaptive CDSSs. This subclass of CDSSs are

supposed to utilize a clinical knowledge-base which reflects the most up-to-date evidence from

clinical research literature and practice-based sources. According to [321], such systems should

incorporate an additional mechanisms which routinely updates this knowledge-base with new

research findings.

Figure 2.1: Implementing the Green Button proposed in [209] into clinical decision-making.
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2.1.6 Acceptance, Evaluation, and Application of CDSSs

In [25], a review on CDSS, impacts and potential harms of CDSS are described. Concerning

acceptance and successful application of CDSSs, several essential characteristics of successful

implementations are mentioned: Timely decision support which don’t induce treatment delays,

interpretable supporting software instead of “Greek Oracle”, notifications and support tailored

to suit the current needs, and low false positive alerts, which increase the risk of alert fatigue.

The analysis of publications presented in [168] identified four essential characteristics of CDSSs:

(i) decision support must be provided automatically as part of the clinician’s workflow, (ii)

actionable recommendations must be provided rather than just assessments, (iii) the decision

support must be delivered at the time and location of decision-making, and (iv) decision support

is supposed to be computer based.

Moreover, the growing engagement of patients in clinical decision-making is to be considered

according to [321, 165], which inevitably is associated with improved clinical outcome. In order

to ensure patient understanding and to support shared decision-making, CDSS should provide

access to prognostic information not only to the clinical practitioner but also to the patient, in

[321] denoted as patient-directed evidence.

Various measures for the quantification of the benefit of CDSSs were proposed. However, due

to the different CDSSs’ purposes, no generic metric is applicable to all such systems. A widely

used measure is the consistency of outputs compared with physicians or other decision support

systems or, in case of systems implementing evidence-based guidelines, the adherence to the

respective guideline. Furthermore, evaluation of impact of CDSSs include improvement of the

care process and patient health outcome in comparison with clinical care without using decision

support. Finally, also organizational outcomes such as cost and efficiency may be evaluated.

Several reviews on the effects of CDSSs are available in the literature with different focuses. In

the following, some of them are discussed.

The work published in [121], which dates back to 2005, identified 97 controlled trials assessing

different types of outcomes, however, abstracted by the authors to improved practitioner per-

formance and improved patient health outcomes. A wide variety of CDSSs were tested, where

the majority (64 %) facilitate diagnosis, preventive care, disease management, drug dosing, or

drug prescribing. From the 29 systems supporting with drug-dosing or prescribing decisions,

19, i.e. 66 % showed improved practitioner performance. Nevertheless, the authors state that

further research is needed to verify effects of those systems on actual patient health. Those as-

pects are stated to remain understudied or are inconsistent. Derived factors hindering successful

CDSS implementation are, according to the authors, failure of practitioners to use the CDSS,

poor usability, lacking integration into the practitioners’ workflow, and general practitioners’

nonacceptance of computer recommendations.

Also in [168], the literature on CDSS is analyzed to identify relevant system features. Here, out-

come is abstracted to improved clinical practice due to the application of CDSSs. As a result, 48

of the 71 included CDSS, i.e. 68 %, demonstrated significantly improved clinical practice. Ad-

ditionally, as already introduced above, four critical features a CDSS should provide to increase

14 Dissertation Felix Magnus Gräßer



2 State of the Art

the likelihood for success. Out of 32 systems which provide all those four features, 30, i.e. 94 %

were capable of significantly improving clinical practice.

In [43], a review dating back to 2012, 148 RCTs were included which are grouped with respect to

evaluated outcomes: health care process (128 studies), patient health outcome (29 studies), and

costs (22 studies). Also this review acknowledges positive effects of CDSS on improving health

care processes. Especially, favorable effects of CDSSs dealing with prescribing treatments were

shown. Clinicians utilizing the respective systems were more likely to chose the appropriate

treatment or therapy. Evidence that demonstrate positive effects regarding clinical and eco-

nomic outcomes, however, remain generally sparse.

The objective of [150] was to systematically review RCTs assessing the effects of CDSS which are

especially designed for drug therapy management purposes. The included studies were grouped

into systems evaluated regarding the two aspects process of care and patient outcome. Con-

cerning process of care, in 37 of 59 included studies, i.e. 64 %, applying CDSSs demonstrated

improvements, whereas only in 6 of 29 trials, i.e. 21 %, patient outcome could be improved. The

authors conclude that lacking clear patient benefits but also lacking data on harms and costs of

CDSSs for drug therapy management hinder a clear recommendation for application.

The authors of [229] especially evaluated the effectiveness of CDSSs linked to EHRs by system-

atically reviewing RCTs on the included systems. The effects of CDSSs on the three outcomes

mortality or morbidity (18 studies) and cost (10 studies) are examined. According to the 28

included studies, no clear affect on mortality was evident (16 studies). However, a statistically

significant effect regarding the prevention of morbidity could be shown (9 studies). Also some

differences concerning costs could be observed, although they were mostly small in magnitude.

As the various study results are very heterogeneous and the shown effects rather small, according

to the authors, CDSSs overall don’t result in substantial benefits or risks for patients in terms

of mortality. However, the demonstrated effects largely depend on disease and setting.

Finally, in [248], a systematic literature review of CPOE systems and CPOE systems with

decision support (CPOE-CDSS) is conducted. The 16 included systems especially address re-

duction of medication errors and preventable ADEs. The principal finding of this analysis is

that CPOE systems are associated with a significant reduction in medication errors and ADEs.

However, no statistically significant difference in effects could be shown between systems with

or without CDSS. In the identified studies a reduction of preventable ADEs of more than 50 %

was shown.

To conclude, CDSSs seem to enhance practitioner performance and the overall care process.

Effects on clinical outcome and patient health remain insufficiently verified and further research

is required. The same is true for economic effects. The application of CPOE systems, however,

obviously has great potential to reduce medication errors and preventable ADEs. Considering

application of CDSS in Germany, according to a survey in 218 hospitals from 2018 [159], CDSSs

are not widespread. Considerable numbers state to have tools at their disposal which provide

clinical knowledge at the point of care (48.8 %), alerting (34.7 %) or reminder systems (22.0 %).

The application of systems which implement medical guidelines or clinical pathways or systems

providing active decision support are, however, rarely present as summarized in figure 2.2.
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Figure 2.2: Application of CDSS in German hospitals (%) according to [159]. Implemented in
all units ( ), implemented in at least one unit ( ), implementation started ( ),
planned, but implementation not started yet ( ), not yet planned ( ).

2.2 Therapy Decision Support Systems

The focus of this work is on CDSSs supporting decision-making concerning drug prescribing

or recommendation. The system is supposed to provide a clinical practitioner with customized

recommendations by incorporating patient characteristics [386], i.e. based on a patient-data

model [318]. Both, practice-based evidence stored in the data basis and literature-based evid-

ence captured by the relevant clinical guidelines, are intended to be incorporated. Thus, works

describing knowledge-based and non-knowledge-based systems [29, 255], but also hybrid systems,

are of particular interest. Finally, a special focus is put on approaches which consider the de-

cisive CDSS features analyzed in [168], namely (i) automatically generated decision support,

(ii) actionable recommendations instead of assessments, (iii) decision support at the time and

location of decision-making, and (iv) the decision support is computer based.

To capture the relevant state of the art and identify a research gap regarding methodologies,

which particularly meet the above stated requirements, a systematic literature review was con-

ducted initially. As special focus is on medical applications, the search engine PubMed1 was

searched on November 20th, 2017, for studies on treatment, therapy, medication or drug decision

support or recommender systems, i.e. according to the search term ((decision support [title])

OR (recommender* [title]) OR (decision aid [title])) AND (treatment [title] OR therapy [title]

OR medication [title] OR drug [title]).

1https://pubmed.ncbi.nlm.nih.gov/
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Figure 2.3: Flow diagram depicting the systematic literature review on therapy decision support
systems based on the PRISMA statement.

As illustrated in figure 2.3, the search resulted in 465 hits without any duplicates. Following

the PRISMA standard1, the retrieved publications are stepwise evaluated in terms of (i) title,

(ii) abstract, and (iii) full text evaluation according to further inclusion criteria.

Inclusion criteria are defined to meet the focuses of this work as stated above and to select

works only, which are in accordance with the essential CDSS features for successful CDSSs

development from [168]. To summarize, only studies are considered which either deal with (a)

active recommendation or exclusion, or (b) prediction (and ranking) of outcome or risks related

to potential treatments, therapies, medications or drugs and (c) recommendation, exclusion or

prediction must be personalized for an individual target patient. All types of mainly alerting

systems, e.g. monitoring for drug allergy or drug-drug-interaction, were neglected (d). Finally,

as technical or methodological aspects are of interest, works which neither employ computers

(e) nor describe an implementation or prototype or at least a detailed conceptual framework (f),

were not considered.

Analyzing titles was conducted by three reviewers, who rated the compliance of each paper

with the inclusion criteria according to the three ordinal attributes, yes, no or maybe. Due to

the heterogeneous distribution of ratings and only moderate agreement (Fleiss’ Kappa2 κ =

1http://www.prisma-statement.org/
2Fleiss’s Kappa measures the inter-rater agreement between a number of raters which can be, in contrast to

Cohen’s Kappa, more than two.
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0.41), the only little restrictive inclusion scheme summarized in table 2.1 was applied for final

selection. Analyzing titles resulted in the exclusion of 137 papers. The number of 328 remaining

publications was further reduces to 297 by only including works which were published from 2000

to the date of the literature search.

Table 2.1: Literature search result inclusion scheme. Each listed combination of ratings led to
inclusion of the respective publication into further analysis.

Rater 1 Rater 2 Rater 3

Yes Yes Yes

Yes Yes Maybe

Yes Yes No

Yes Maybe Maybe

Yes Maybe No

Maybe Maybe Maybe

In the following selection steps, abstracts and full text were evaluated by one reviewer for

eligibility, i.e. if matching the defined criteria, which resulted in exclusion of 207 and 38 papers,

respectively.
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Figure 2.4: Algorithms (a) and evaluation schemes (b) applied in the identified publications.
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In summary, our review examined 52 papers which were categorized regarding the type of

therapy, the algorithms used and the type of study that was performed to evaluate the sys-

tem. Furthermore, the condition addressed and the status of the development are discussed.

Table A.1 summarizes the identified publications and findings.

From the 52 selected studies, 27 works address CDSSs for pharmaceutical treatments whereas

the targeted conditions are very heterogeneous and vary widely. As shown in figure 2.4 (a),

about half of the identified studies are knowledge-based (28). 15 implement clinical guidelines

[58, 292, 354, 217, 130, 268, 250, 304, 80, 98, 222, 290, 101, 238, 392] and 13 rely on rules

generated on the basis of other domain knowledge about the addressed application [32, 31, 144,

183, 279, 244, 185, 268, 64, 328, 218, 269, 11]. The latter category also includes systems which

rely on guidelines supplemented with expert knowledge or knowledge from clinical trials [144,

244, 185, 328, 11]). The authors of [32, 31] propose an algorithm that is based on a rule set,

which can continuously be updated by experts and is automatically evaluated using a database

of previous cases. Regarding non-knowledge-based approaches, various ML or other data min-

ing algorithms are utilized in the identified publications. Probabilistic (Bayessian) approaches

(Bayessian Networks [334, 324, 207, 309], Causal Probabilistic Networks [154], Naive Bayes Clas-

sifier (NB) [208], others [84]) and decision trees [323, 216, 188, 340, 352, 272, 167] are the most

popular choices. Whereas the first derive the likelihood of specific events, the latter learn rules

automatically from given data. Both, Bayesian methods and decision trees are intuitive as they

model human information processing and are furthermore able to represent causal relationships

between variables. Moreover, the application of linear functions is very commonly proposed.

Those can be constructed based on domain knowledge ([201, 245, 8]), or linear ([234]) or logistic

([260, 137]) regression models. In [252], a combination of a bagged decision tree ensemble with

linear regression is proposed. Finally, two works employ Artificial Neural Networks (ANNs)

[391, 263] and only one therapy recommendation algorithm utilizes an instance based algorithm

which relies on similar cases in a database [88].

The majority of the suggested algorithms or systems can be considered to be standalone applic-

ations (29) and do not integrate existing patient records (EHR) or other data source (CPOE,

LIMS) (23). Only one of the proposes systems [304] uses both, structured and unstructured

data extracted from clinical notes by using NLP algorithms. Out of the 52 identified works,

only for 37 proposed systems evaluation results from a retrospective (25) or prospective (12)

study are described in the respective publication. As summarized in figure 2.4 (b), algorithms

are typically evaluated concerning the accordance of CDSS recommendations with experts (19),

clinical guidelines (3), or similar cases (1), concerning treatment outcome (8), concerning con-

tradicting recommendations (3), concerning saved costs (3), and concerning efficiency of usage

(1). For the remaining 16 publications, either only systems without performance characteristics

are described (11) or no studies are performed yet (3).

Data-driven CDSSs are an active and dynamic area of research today. This is especially

accelerated by advances in and popularity of machine learning research. A repeated search using

PubMed on July 10th, 2021, yielded 692 results which are additional 227 (48.82%) publications

compared to the initial search.
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2.3 Health Recommender Systems

As already introduced in chapter 1, RSs are widely and successfully used in order to support users

with the decision-making task in multiple, especially online applications, such as e-commerce,

music and movie streaming services, news providers and social media. The underlying concept

is to predict users’ preference based on information about previous interaction with the system

or other knowledge about the target user.

In spite of obvious analogies of typical RS applications and the therapy recommendation set-

ting, the initial literature search on PubMed (section 2.2) did not retrieve any publications on

RS methods in medical applications. An extended search including ACM Digital Library1 and

IEEE Xplore2 and a backward search, which examines the bibliographies of the publications,

identified various works employing RS techniques for health applications, namely HRSs, which

are summarized in the following. The comprehensive literature review includes all works on

HRSs employing typical RS techniques introduced in 3.2 and listed in table 3.1. Furthermore,

only publications which focus on clinical applications and utilize data related to health records

do derive recommendations are included. All works which deal with recommending hospitals,

doctors or social networks, but also nutrition or lifestyle change and behavior recommendations

are neglected. Hence, only 24 works from 19 research groups remained which can be broadly cat-

egorized into reviews or frameworks on the one hand, and approaches addressing the objectives

adverse event prediction and prevention, outcome prediction and therapy recommendation and

disease risk stratification, on the other hand. The identified publications on HRSs are analyzed

regarding underlying algorithms, category of application, underlying data, and addressed user

and are listed in table 2.2. Whereas patient data includes (condition related) attributes such as

demographic information, diagnoses, or laboratory results, treatment history comprises previous

treatments, order history previous clinical orders in general, and clinical history previous dia-

gnoses only. ADE data summarizes datasets containing experience with drug-drug interactions.

As can be seen, only 10 works can be categorized into the group of treatment recommendations

including those recommending clinical orders in general. In this group, in turn, no work deals

with the recommendation of pharmaceutical treatment exclusively. 4 works in this group use

treatment or clinical order history and 6 works use patient data as basis for recommendations.

2.4 Regulatory Affairs

In the following, the regulatory requirements regarding a data-driven therapy recommender sys-

tem are discussed. In Europe, basis for the regulations on clinical software in general is the

Medical Device Regulation (MDR 2017/745) which is valid since Mai, 25th 2017. After a trans-

ition period of three years it finally replaces the EU directives Medical Device Directive (MDD

93/42/EWG) and the Active Implantable Medical Device Directive (AIMDD 90/385/EWG).

In contrast to the directives, which were to be transfered into national law, the regulation is a

1https://dl.acm.org/
2https://ieeexplore.ieee.org/Xplore/home.jsp
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Table 2.2: Related works regarding HRSs ordered by year of publication, analyzed in terms of
underlying algorithms, category of application, underlying data, and addressed user.

Ref. Year Algorithm Category Data User

[227] 2007 Memory-based ADE prediction Treatment history Physician

[95] 2008 Association analysis Treatment Treatment history Nurse

[148] 2010 Memory-based Disease prediction Patient data Physician

[105] 2010 Association analysis Disease prediction Clinical history Physician

[79] 2010 Memory-based Disease prediction Clinical history Physician

[94] 2011 Association analysis Treatment Treatment history Nurse

[212] 2012 Memory-based Treatment Patient data Physician

[176] 2012 Memory-based Treatment Patient data Physician

[310] 2013 - Review - -

[325] 2013 Memory-based,
content-based,
knowledge-based

Treatment Patient data Physician

[57] 2013 Memory-based Disease prediction Clinical history Physician

[60] 2013 Association analysis Treatment Order history Physician

[381] 2014 Content-based Information Patient data Physician,
patient

[106] 2015 Association analysis,
HMM

Disease prediction Clinical history Physician

[59] 2016 Association analysis Treatment Order history Physician

[398] 2016 Memory-based,
ANN

Treatment Patient data Physician

[396] 2016 Memory-based ADE prediction ADE data Physician

[49] 2016 - Framework - -

[145] 2016 Memory-based Disease prediction Patient data Physician

[301] 2017 - Framework - -

[136] 2017 Memory-based Treatment Patient data Physician

[65] 2018 model-based, LR ADE prediction ADE data Physician

[194] 2019 - Review - -

[236] 2020 Memory-based Treatment Patient data Physician,
patient

[355] 2020 - Review - -

[82] 2021 - Review - -
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binding legal act that all EU countries must fully implement. In order to ease product develop-

ment complying with the requirements of the relevant EU legislation, European standardization

bodies provide harmonized standards with more technical requirement descriptions. As long as

the relevant standards are applied during product development and manufacturing, conformity

to the MDR is assumed. Table 2.3 lists the relevant harmonized standards in the context of a

therapy recommender system.

According to intended purpose and the risks associated with the respective device, the MDR

includes 22 classification rules to classify medical devices into risk classes I, IIa, IIb, and III

(MDR, Annex VIII). This risk class significantly determines the required efforts concerning

conformity assessment and clinical evaluation. Apart from class I, which can be self-assessed,

all risk classes require a notified body for conformity assessment according to the MDR. Rule

11 of the MDR especially deals with the classification of software. Software, which is designed

to deliver information to support diagnostic oder therapeutic decisions, is at least classified as

IIa. However, depending on the potential consequences of decisions, also class IIb or III may be

applicable.

In Europe, there are no harmonized standards dealing particularly with data-driven or ma-

chine learning software applications and many regulatory issues remain unanswered to date.

Nevertheless, also products using data-driven or machine learning algorithms must meet the

already existent requirements regarding medical software. To do so, utility and performance

must be verified. Furthermore, the product must be developed suchlike that repeatability, re-

liability and performance can be ensured and also the method how to ensure this verification

must be described (MDR, Appendix I 17.1). In case clinical evaluation is based on a comparat-

ive product, this algorithms must be sufficiently technically equivalent (MDR, Appendix XIV,

Part A, Paragraph 3). Finally, also the competences of the persons involved in the development

must be determined and guaranteed (ISO 13485:2016, 7.3.2). In order to support development

of such products in spite of the lacking standards, a guideline was published in July 2019 by a

consortium of Johner Insitute, notified bodies, manufacturer and experts1. However, it must be

kept in mind that this guideline is neither a legal requirement nor a harmonized standard.

1https://github.com/johner-institut/ai-guideline, accessed Dezember 12th, 2019
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Table 2.3: Relevant harmonized standards.

Standard Description

EN ISO 13485:2016 Medical devices — Quality management sys-
tems — Requirements for regulatory purposes

EN ISO 14971:2007 Medical devices — Application of risk man-
agement to medical devices

EN 62304:2006 Medical device software — Software life cycle
processes

EN 62366-1:2015 Medical devices — Part 1: Application of us-
ability engineering to medical devices

IEC/TR 62366-2:2016 Medical devices — Part 2: Guidance on the
application of usability engineering to medical
devices

IEC 82304-1:2016 Health software — Part 1: General require-
ments for product safety (not harmonized)
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Within this chapter, fundamentals concerning the methods and algorithms used in this work

are described. In section 3.1, a detailed overview on similarity measures and distance metrics

is provided, targeting different data types and properties. In the following section 3.2, a back-

ground on RS methods is given and especially CFs are detailed. Furthermore, in section 3.3, an

introduction to ML with special focus on Decision Trees (DTs), DT ensemble techniques, Hidden

Markov Models (HMMs), and ANN is provided and also aspects such as model interpretability

are discussed. Finally, data preprocessing techniques and the evaluation metrics applied in this

work are described in sections 3.4 and 3.5, respectively.

3.1 Patient Similarity

A straightforward approach to make personalized outcome predictions is to identify patients

similar to a target patient and derive insights from his or her clinical data. To this end, instances,

i.e. patients, are represented in an attribute space suchlike that they ideally form clusters in

that space. Representatives of these instance-based and non-parametric methods are K-Nearest-

Neighbor (KNN) classification and regression [73, 78, 61, 373, 51, 211, 155, 370, 371, 372, 341,

376, 206, 336], Case-based Reasoning (CBR) [26, 257, 346, 151, 129, 147], unsupervised and

supervised clustering [254, 368], and structuring data into patient similarity networks [23, 369,

375, 356, 253]. However, also the family of memory-based CF algorithms, detailed in section 3.2.2

and applied in section 5.3, rely on the similarity between instances. Additionally, various works

propose to train personalized, i.e. case-specific, machine learning models on similar patients or

cases only, instead of global models, to provide customized and patient specific predictions [196,

243, 388, 356, 105].

3.1.1 Metric Space

The essence of all instance-based algorithms named in the previous section is the appropriate

quantification of similarity or distance based on meaningful attributes.

Distance between two instance representations can be measured using a distance function which

is defined for a metric space. Given the dataset X of dimension N × M , a distance function
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d : X × X → R is a metric on X, if for any elements xi, xj , xk ∈ X holds

(1) positive-definite: d(xi, xj) > 0 ⇔ xi 6= xj

d(xi, xj) = 0 ⇔ xi = xj

(2) symmetry: d(xi, xj) = d(xj , xi)

(3) triangle inequality: d(xi, xk) ≤ d(xi, xj) + d(xj , xk)

Suchlike, the pair (X, d) forms a metric space if d is a metric on X. The elements of X are

points in this metric space and d(xi, xj) is the distance between the points xi and xj .

A common generalization in the context of metric learning (section 3.1.6) is the application of

pseudo metrics. A function d : X × X → R ∪ {+∞} is called a pseudo-metric (semi-metric) if

the conditions (1) to (3) except d(xi, xj) = 0 ⇔ xi = xj holds. In the pseudo-metric space,

non-identical points can have zero distance.

A formal definition of the concept of similarity and the relationship between distance functions

and similarity is given in [61]. Simplified, similarity can be defined as some inverse of a distance.

Common approaches for converting a distance metric into a similarity measure is simply using

the negative of a distance or, in case of distance metrics which quantify distance in the range 0..1,

by computing the complement s(xi, xj) = 1 − d(xi, xj). However, more definitions of similarity

functions exist such as [35]

s(xi, xj) =
1

1 + d(xi, xj)
(3.1)

In the following, selected distance and similarity functions for the various data types are shown

as they are applied in section 5.3.1 and 5.3.2, depending on the utilized patient data. In the fol-

lowing, interval and ratio scaled attributes are summarized as quantitative and ordinal, nominal

and dichotomous attributes as qualitative attributes. Ordinal attributes can be transformation

to an interval scale under appropriate assumptions regarding the distance between adjacent or-

dinal categories. For the sake of simplicity, all ordinal variables are assumed to have equidistant

categories in this work. Reviews especially addressing patient similarity can be found in [44],

[312] and [256].

3.1.2 Quantitative Attributes

For distance computation between quantitative attributes, Minkowski metrics describe the fam-

ily of metrics induced by the p-norms on a vector space. For the points xi and xj in the metric

space (X, d), their distance is defined as

dMink (xi, xj) = || xi − xj || p = (
M
∑

m=1

| xim − xjm | p ) 1/p (3.2)

By the selection of p, Minkowski metrics with different order can be generated, however, with

26 Dissertation Felix Magnus Gräßer



3 Fundamentals

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

dn,k

sn
,k

Figure 3.1: Gaussian RBF to convert distance metrics to similarity measures. Two exemplary
spread parameters σ = 0.25 ( ) and σ = 0.5 ( ) are shown.

the restriction p > 0 in order to meet the triangle-inequality. Generally, with increasing p the

impact of large elements increases whereas the impact of small components decreases. The most

commonly applied Minkowski metric in the context of patient comparison are

(1) Manhattan-Distance : dMan (xi, xj) =
M
∑

m=1

| xim − xjm | (p = 1)

(2) Euclidean Distance : dEuc (xi, xj) =

√

√

√

√

M
∑

m=1

| xim − xjm | 2 (p = 2)

(3) Chebyshev-Distance : dCheb (xi, xj) =
M

max
m=1

| xim − xjm | (p → ∞)

Figure 3.2 shows the respective unit circles of these Minkowski metrics which demonstrate all

points equidistant to the origin of coordinates for the respective metric. Besides the afore-

mentioned general approaches for converting distance metrics to similarity measures, applying

the Gaussian Radial Basis Function (RBF) to convert Euclidean distance into a similarity is

proposed in the context of quantitative attributes [365, 369]

sRBF (xi, xj) = exp(−
||xi − xj ||2

2σ2
) (3.3)

with the spread parameter σ being a free tuning parameter. In figure 3.1, exemplary RBFs with

σ = 0.25 and σ = 0.5 are shown. shown.

In contrast to exploiting the relative positions of points in a quantitative vector space, also

the relationships between the directions of vectors of data points can be revealed to measure
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similarity directly. Typical examples are computing the cosine of the angle between two vectors

xi and xj [196, 199, 56], denoted as the Cosine similarity.

sCos(xi, xj) =
xT

i xj

||xi||||xj ||
=

∑M
m=1 ximxjm

√

∑M
m=1 x2

im

√

∑M
m=1 x2

jm

(3.4)

Moreover, Pearson correlation can be regarded as the Cosine similarity between centered vec-

tors. Pearson correlation quantifies the degree of linear relationship between two vector repres-

entations xi and xj .

sCorr(xi, xj) =

∑M
m=1(xim − x̄m)(xjm − x̄m)

√

∑M
m=1(xim − x̄m)2

√

∑M
m=1(xjm − x̄m)2

(3.5)

Figure 3.2: Unit circles of Minkowski metrics

3.1.3 Qualitative Attributes

To compute distance or similarity between two vectors xi and xj of length M containing qual-

itative attributes only, various distance functions are defined which are all based on overlap,

i.e. the co-occurrence of attribute values. Hamming distance generally measures the number

of positions in which the symbols in a string differ, i.e. the disagreement between two vectors.

Normalized by the number of attributes and transfered to a similarity function according to

sSMC(xi, xj) = 1 −
dHamm(xi, xj)

M
, (3.6)

the hamming distance is converted into the Simple Matching Similarity Coefficient (SMC) also

denoted as M-coefficient. For the application of dichotomous attributes, SMC counts both,

the mutual presence and absence of attributes. In contrast, the Jaccard similarity coefficient

(S-coefficient) [395], intended to compare the similarity of finite sample sets, counts mutual

presence only and normalizes by the number of attributes present in at least one vector. Hence,

Jaccard similarity is beneficial in applications where the presence and absence of values do not
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carry equal information, i.e. are asymmetric. In such cases, counting the mutual non-existence

of values in both vectors provides no meaningful contribution to similarity. [16]

However, there are many more specialized distance and similarity functions for qualitative

attributes proposed in the literature [51]. An extensive review and comparison can be found in

[35] and [68].

3.1.4 Mixed-type Attributes

In many real world applications, quantitative and qualitative attributes need to be incorporated

into a common distance or similarity function, known as heterogeneous distance or similarity

measures, respectively.

One approach to combine both data types is discretization of continuous attributes at the expense

of information loss and deterioration of generalization capability.

However, various coefficients are proposed and applied in the literature to handle heterogeneous

data directly, as the Gower similarity coefficient [131, 376] and the Heterogeneous Euclidean

Overlap Metric (HEOM) [383, 155].

According to the Gower similarity coefficient definition [131], as it is employed in this work, the

similarity between the two instances xi and xj is computed as

sGSC(xi, xj) =

M
∑

m=1

δijm · wm · ρijm

M
∑

m=1

δijm · wm

(3.7)

where ρijm quantifies the similarity between two instances according to the mth attribute which

can additionally be weighted with wm. The coefficient δijm controls whether to include ρijm

into the similarity computation. δijm is set to 1 if the respective attribute is known for both

instances and set to 0, otherwise. ρijm is defined for three different data types [131]. For simil-

arity computation between interval and ratio scaled (quantitative) values Manhattan distance,

normalized to the individual attribute ranges, is used, whereas for nominal or dichotomous

(qualitative) attributes SMC or Jaccard similarity coefficient are applied, respectively. Ordinal

attributes are are transformation to interval scale and considered to be quantitative as described

in section 3.1.1.

Also for mixed-type, i.e. heterogeneous data there are many more specialized distance and

similarity measures proposed in the literature [129, 55, 75].

3.1.5 Feature Selection and Weighting

Individual attributes can be of varying importance for the task of distance or similarity com-

putation or even bear irrelevant or redundant information. In general, large dimensionality

of the attributes space is connected with various drawbacks. Large dimensionality is typically

detrimental regarding sensitivity to noise and generalization performance. Secondly, the compu-

tational burden increases with dimensionality. Moreover, a model with increasing dimensionality
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typically becomes less interpretable for users. Last but not least, the curse of dimensionality

can have a crucial influence on the reliability of the calculated distance or similarity. With

increasing dimensionality of the attribute space the representation of the local neighborhood is

expanded and becomes imprecise and the concept of similarity increasingly meaningless [295].

As a consequence, attribute selection and weighting was identified as an key research issue in the

context of CBR algorithms [26]. Also in the context of KNN approaches redundant, irrelevant,

interacting, or noisy attributes were reported to degrade the performance of such algorithms

substantially [378]. Works specifically dealing with patient similarity also address the issue of

attribute selection and attribute weighting [155].

Generally, attribute or feature selection approaches aim at selecting a subset of the most dis-

criminant attributes in order to minimize redundancy and maximize relevance. Consequently,

attribute selection can improve accuracy and generalizability, lower computational complexity

and required storage, and strengthen the ability of model interpretability. [161, 349, 160, 205]

In contrast to transformation based dimensionality reduction methods as Principal Component

Analyis (PCA) or Linear Discriminant Analysis (LDA), attribute selection choses attributes

from the original attribute space. As a consequence, the physical meaning of the original attrib-

ute can be maintained in favor of explainability and interpretability. [161, 349, 160, 205]

Three basic attribute or feature selection approaches are distinguished:

(1) Filter methods rely on general training data characteristics and are independent of the

prediction model. They typically intend to rank the available attributes according to an uni-

variate or multivariate criterion such as distance (Relief-based Algorithm (RBA) [171, 177, 363]),

mutual information (mRMR [264]), or correlations with both, target value and other attributes

(CFS [143], FCBF [390]). Based on such rankings, attributes can be selected or discarded using

application specific thresholds.

(2) Wrapper methods, on the other hand, incorporate a classification or regression algorithm

to determine the performance of a selected attribute subset in connection with this learning

algorithm [174, 273, 326]. Due to this incorporated interaction between attribute subset and

prediction model, wrapper methods can have superior performance to filter methods. Given

a predefined learner, wrapper algorithms iteratively add or eliminate attributes to or from an

attribute subset and evaluate the overall system performance in each iteration. The objective

is to optimize the overall performance of the system by finding an optimal attribute subset.

As the computational complexity for evaluating each attribute combination for N attributes

is O(2N ), an exhaustive search is impractical. To meet this challenge, various heuristics have

been proposed which characterize the different wrapper models [273, 326, 327]. Nevertheless, in

contrast to filter methods, wrapper own much higher computational cost and may suffer from

generalization issues [210, 286, 285, 322].

(3) Embedded methods for attribute selection, finally, share the same idea with wrapper meth-

ods to perform attribute selection by incorporating the selected prediction model. However,

in contrast to wrapper methods, those methods perform attribute selection directly during the

model training process. [149]
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In addition to selecting only the relevant and discarding redundant attributes, also the in-

dividual influence of attributes on the computed distance or similarity can vary in accordance

with their importance. For this reason, incorporating attribute weighting schemes into distance

or similarity measures was proposed in various non-medical [71, 228, 174, 378, 379, 305, 344]

and medical contexts [78, 51, 172].

Attribute weighting strategies intend to assign a value to each attribute reflecting its relevance

[228, 378]. Thus, attribute weighting can be considered as a generalization of attribute selection

which assigns binary inclusion and exclusion weights. Finally, after scaling the attributes in

accordance with their estimated importance, a distance or similarity function can be applied to

two data points. Such an approach is utilized in section 5.3.2.1, by adapting and RBA from the

domain of the filter methods to the given therapy recommendation task.

3.1.6 Metric Learning

Additionally to attribute importance, the multivariate distribution of observations can have cru-

cial impact on the performance of an instance-based prediction algorithm. Accordingly, besides

weighting attributes in accordance with their individual importance, more complex attribute

space transformations can be beneficial. Metric learning deals with automatically learning spe-

cialized distance functions that include patterns underlying the data at hand and incorporate

feedback from one [337, 336, 374, 371, 370] or several physicians [338, 373] into the distance

computation.

The most common approach proposed in the literature is learning a linear transformation

before applying a distance function such as the Euclidean distance. This linear metric learning

approach can be formulated as a generalized quadratic or Mahalanobis pseudo-metric or metric

dM (xi, xj) =
√

(xi − xj)T M (xi − xj) (3.8)

with the symmetric positive semi-definite or definite transformation matrix M, respectively. [28,

189, 387, 377, 337, 336, 373, 243, 371, 206]

Unlike unsupervised linear transformations, such as PCA or Mahalanobis distance [211, 254],

which both decorrelate and standardize the data by rotating the original basis and scaling

the data by its standard deviation, metric learning algorithms incorporate application specific

supervised information as ground truth or physicians’ feedback. This is typically done in the

form of similarity or dissimilarity [28, 189, 370, 371] constraints for the instances xi, xj and xk
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and with the application specific boundaries u, l and m

S = {(xi, xj) : xi and xj are supposed to be similar} (3.9)

dM (xi, xj) ≤ u (xi, xj) ∈ S

D = {(xi, xj) : xi and xj are supposed to be dissimalar} (3.10)

dM (xi, xj) ≥ l (xi, xj) ∈ D

or relative distance constraints [28, 189, 274]

R = {(xi, xj , xk) : xi is more similar to xj than to xk} (3.11)

dM (xi, xj) < dM (xi, xk) (xi, xj , xk) ∈ R

or dM (xi, xj) < dM (xi, xk) − m (xi, xj , xk) ∈ R

The objective of the metric learning algorithm is to find the parameters M of the metric such

that it meets those constraints as closely as possible. This is typically formulated as an optim-

ization problem which comprises an objective function L(M, S, D, R), encoding the respective

constraints, and a regularization term R(M), which is controlled by the regularization parameter

λ ≥ 0. The target is to minimize the overall loss, which is increased by every violation of the

given constraints, by simultaneously finding the least complex solution [28, 189].

Particularly to learn patient similarity, the Locally Supervised Metric Learning (LSML) al-

gorithm was proposed [337, 336, 338, 373, 374, 243, 96, 341]. The LSML algorithms is intended

to learn a linear metric which can be formulated as a generalized Mahalanobis metric. The

LSML algorithm targets to – based on supervised information – simultaneously minimize local

compactness Ci and maximize local scatterness Si of each instance xi by optimizing the objective

function

L(M) =

∑N
i=1 Ci

∑N
i=1 Si

(3.12)

with local compactness Ci and local scatterness Si being defined as

Ci =
∑

xj∈N o
i

d2
M (xi, xj) =

N
∑

i=1

∑

xj∈N o
i

(xi − xj)T M (xi − xj) (3.13)

and

Si =
∑

xk∈N e
i

d2
M (xi, xk) =

M
∑

i=1

∑

xk∈N e
i

(xi − xk)T N (xi − xk). (3.14)

N o
i is the homogeneous and N e

i the heterogeneous neighborhood of an instance xi, i.e. the K

nearest neighbors of xi with equal and different label, respectively.

Another successfully applied algorithm belonging to the class of linear metric learning al-

gorithms is the Large Margin Nearest Neighbor (LMNN) algorithm proposed in [377]. The

LMNN algorithms learns a Mahalanobis metric M by taking a priori information regarding
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similarity and dissimilarity into account. Within the neighborhood of a target instance, samples

which are intended to be similar are pulled towards this target instance whereas samples which

are considered to be dissimilar are pushed outside the boundary of the neighborhood. This met-

ric learning method is particularly intended for the application in neighborhood-based classifiers

and is adapted to the therapy recommendation algorithm proposed in section 5.3.2.2.

In order to find optimal solution for formulated objective functions L(·), Gradient Decent (GD)

but also specialized optimization algorithms adapted to the metric learning model at hand are

proposed in the literature [189, 337, 338, 373, 374, 370].

3.2 Recommender Systems

3.2.1 Overview

RS describe software tools and techniques which intend to support users with the decision-

making task in versatile applications by providing personalized suggestions [288, 333]. Due

to information overload and overwhelming alternatives, especially in online applications as e-

commerce, music and movie streaming services, news providers and social media, RS have gained

increasing popularity within the preceding years and are an active topic of research. From the

service providers’ perspective, the benefit of RS is, on the one hand, increasing the number

of items sold. On the other hand, a well designed RS can also be capable of increasing user

satisfaction and give insight into user needs and preferences [288, 333].

The field of RS has evolved considerably over the recent years yielding sophisticated and spe-

cialized methods depending on domain, purpose and personalization level [333]. The typical

approach is to predict a user’s preference for items and convert these estimates into personalized

recommendations [288, 4, 333]. RS types differ in the incorporated knowledge about users and

items and concerning the algorithm for computing preference estimates [288].

Specific knowledge and information about users and items, but also feedback on previous pur-

chases or recommendations can be leveraged to personalize recommendations [288]. Such feed-

back on items can either be implicit user behavior, e.g. simple mouse clicks, browsing behavior,

or actual purchases, or explicit in the form of numerical ratings, e.g. a five-star rating sys-

tem [4, 333]. The observed feedback of the N users U = {u1, u2, ... , uN } on the M items

I = {i1, i2, ... , iM } are typically stored in a N × M user-item feedback matrix R. Consequently,

feedback of users on items are represented in R as vectors in the user or item space, respectively.

A taxonomy of recommendation algorithms can be made differing between 5 basic types of RS

models as summarized in table 3.1 [48]. Collaborative Filtering (CF) techniques employ the

feedback history of multiple users with similar taste to derive personalized preference estima-

tions [298]. Content-based RS exploit user feedback along with attributes describing an item

to make recommendations. Here, the basic idea is to link user interests, i.e. feedback associ-

ated with the item attributes, with items [261]. Demographic-based RS use personal attributes

of an user to identify demographic classes which are associated with certain preferences [186].

The idea is to identify users with similar demographic properties. Knowledge-based RS leverage
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users’ explicitly specified interests or requirements, which are then combined with domain know-

ledge and constraints to derive recommendations. Hybrid approaches (section 3.2.3) combine

the complementary advantages and disadvantages of the aforementioned methods to facilitate

more robust recommendations in a wider settings variety [48]. Finally, more advanced models

incorporate additional context information, such as location and time, into the recommendation

process [288].

There are strengths and weaknesses of the various RS techniques. Especially the cold start

problem constitutes challenges to most adaptive RS approaches such as CF, content-based and

demographic-based recommender. For users for whom no or only little feedback is available,

deriving preference pattens and comparison to other users renders difficult or is impossible,

respectively [4]. Content-based but also demographic-based methods rely on the explicit asso-

ciation of items with specific content features which needs to be implemented prior to runtime

and are static. Demographic-based recommender additionally rely on the willingness of users

to provide personal information which potentially limits the popularity of those approaches.

The drawback of knowledge-based systems is the limiting factor of acquiring domain knowledge,

which also needs to be provided prior to runtime. Furthermore, in comparison with the afore-

mentioned adaptive approaches, this knowledge and hence the association between user and

items is static and doesn’t evolve over time. However, such knowledge-based algorithms are

independent from feedback history and thus, are not having cold start or sparsity problems. [48]

3.2.2 Collaborative Filtering

As stated beforehand, CF models utilize the captured feedback history from multiple users to

predict the feedback, i.e. preference of a target user u. The underlying assumption is that

unknown feedback can be imputed by exploiting correlations of the observed feedback across

various users and items [4]. As CF approaches rely on the feedback of other users only, limita-

tions of content-based methods, such as lacking content information or domain knowledge, can

be overcome. There are two basic CF types distinguished, namely memory-based and model-

based methods. [288, 333]

Whereas memory-based techniques use the user feedback directly, model-based methods employ

typical machine learning algorithms, as introduced in section 3.3, to develop regression or clas-

sification models from user feedback. However, also dimensionality reduction approaches, which

uncover latent factors that explain observed feedback, can be regarded as model-based methods.

In the following, memory-based CF, as well as dimensionality reduction techniques and linear

regression methods are introduces, as they are widely applied in the context of CF. Within

this work, various memory-based CF variants and extensions will be contrasted in section 5.3, a

model-based linear regression method applied in section 5.4 and an approach utilizing a machine

learning model is demonstrated in section 5.5.
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Table 3.1: Taxonomy on RS methodologies based on [48]

Type Concept Advantages Disadvantages

Collaborative
filtering (CF)

Identification of users
with similar preference
according to their
purchase or feedback
history (user-based
CF). Items preferred
by those similar users
are recommended.

• No domain
knowledge needed

• Adaptive and
improving over
time

• Easy
implementation

• New user and
new item cold
start problem

• Dependent on
historic data

Content-based Identification and
recommendation of
items which meet the
user’s preference based
on item features
(content).

• No domain
knowledge needed

• Adaptive and
improving over
time

• New user cold
start problem

• Dependent on
historic data

• Item features are
static

Demographic-
based

Recommendations
based on personal
attributes of a user
and the identification
of demographic classes.

• No domain
knowledge needed

• Adaptive and
improving over
time

• Cold start
problem
concerning new
users

• Dependent on
historic data

• Dependent on
demographic
information

Knowledge-
based

Match between the
user preferences and
item features are
computed based on
domain knowledge.

• No cold start
problem

• Directly maps
from user’s
preference to
items

• Static knowledge
base

• Knowledge
engineering
required

Hybrid
Recommender
System

Techniques above are
combined to
compensate for
complementary
disadvantages of one
techniques by
advantages of another
one (section 3.2.3).
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3.2.2.1 Memory-based Collaborative Filtering

Memory-based CF models, also widely denoted as neighborhood-based CF, belong to the earliest

and most popular RS techniques. The popularity of this type of algorithms can be associated

with their simplicity, efficiency and ability to provide accurate and personalized recommenda-

tions [284, 178, 314, 288]. In chapter 5, such memory-based CF approaches are adapted and

applied to the therapy recommendation setting.

In the memory-based CF setting, the user-item feedback matrix R is directly utilized to predict

feedback on items. Two approaches are common. User-based CF [152, 36] predict the feedback

r̂ui of a target user u on a target item i based on feedback given by similar users on i, whereas

item-based CF [298, 87] predict r̂ui based on feedback given to similar items by user u, respect-

ively. This work will, however, focus on user-based CF approaches in the following. The transfer

to the item-based approach is straightforward.

In case of the user-based approach, the assumption is that feedback of a user u regarding an

item i is likely to be similar to the feedback of another user v on i, if u and v have rated other

items similarly [126]. The feedback r̂ui of a target user u on an unknown item i is estimated

by averaging the observed feedback in the user’s neighborhood Ni(u). If suv quantifies the

similarity between two users u and v, the set of nearest neighbors Ni(u) having the largest

similarity suv and which provide feedback on item i can be identified. To additionally take

the level of similarity between u and a neighbor v into account, the contribution of v to the

feedback prediction is typically weighted by its similarity suv. Hence, r̂ui is defined as the linear

combination of the feedback on i observed in the neighborhood Ni(u) of a target user u with

coefficients being the similarity suv. The impact of suv can additionally be emphasized using an

exponential case amplification coefficient α > 0 [36] such that

r̂ui =

∑

v∈Ni(u)(suv)α · rvi
∑

v∈Ni(u) |(suv)α|
(3.15)

The fashion how similarities suv are computed has crucial impact on performance and recom-

mendation quality of memory-based CF. Both, selection of the nearest neighbors of a target user

or item and the impact a neighbor induces into the feedback prediction depend on this similar-

ity [288]. As detailed in the previous section 3.1, there are numerous functions which quantify

similarity between user representations. In the context of RS, especially Cosine similarity and

the Pearson correlation coefficient are widely used similarity measures.

As each user typically has its individual scale for explicit feedback normalization schemes have

been proposed in the context of CF[288, 152].

Mean-centering refers to transforming a given rating to the polarity of this feedback and the ex-

tent to which it is associated with positive or negative sentiments. Therefore, the given feedback

rui is compared to the mean of all available ratings for this user r̄u or item r̄i, respectively.

r̂ui = r̄u +

∑

v∈Ni(u)(suv)α · (rvi − r̄v)
∑

v∈Ni(u) |(suv)α|
(3.16)
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In order to additionally consider the variance of individual rating scales, it is also common to

divide the mean-centered feedback by the standard deviation of ratings of a user σu or item σi.

This yields the standardization for user-based predictions

r̂ui = r̄u + σu

∑

v∈Ni(u)(suv)α · (rvi − r̄v)/σv
∑

v∈Ni(u) |(suv)α|
(3.17)

Besides the utilized similarity measure, also the selection on an appropriate neighborhood size

K has significant impact on the recommendation quality. If too few neighbors are incorporated

into the feedback estimation, the prediction accuracy is usually low. On the other hand, if

the neighborhood is too large, patterns are blurred and noise is induced which leads to a drop

in prediction accuracy [288]. In contrast to determining a fixed number of neighbors K, the

neighborhood size can also be chosen by determining a similarity threshold thrs. Here, only

neighbors which are localized within this neighborhood are incorporated into the feedback pre-

diction computation. Both K and thrs are typically determined by cross-validation.

As stated beforehand, sparsity can be challenging to memory-based CF approaches and signi-

ficantly impact recommendation quality. Furthermore, similarity becomes less meaningful with

increasing dimensionality due to the curse of dimensionality as mentioned before. One strategy

to tackle those problems is to apply dimensionality reduction methods, which can additionally

increases efficiency and reduces the impact of noise [345]. The underlying concepts of dimen-

sionality reduction are matrix decompositions, in the context of RS often referred to as Matrix

Factorization (MF). Numerous MF algorithms featuring varying constraints regarding the fac-

torization and their objective function have been proposed [345, 4]. In appendix F.2, an overview

on MF techniques as typically applied in the context of RS is given.

3.2.2.2 Linear Regression

As feedback predictions in user- and item-based CF algorithms are computed as linear combin-

ations of observed feedback, memory-based CF algorithms can be regarded as a regression task.

The applied methodology, however, deviates from conventional linear regression approaches and

has particular constraints.

Model coefficients are determined using heuristic similarity measures. Also, as described in sec-

tion 3.2.2.1, one general regression model is employed for all items or users, respectively. In

case of the user-based CF algorithm, similarity between a target user and its neighboring users

is utilized as linear coefficients to model feedback of this particular user regarding all possible

items. In case of item-based CF, similarity between a specific item and its neighboring items is

utilized as linear coefficients to model feedback of all users regarding this particular item. Those

similarity measures, however, are not optimal regarding the observed feedback and do not ac-

count for any interdependencies among items or users. Furthermore, only a preselected subset

of all available information is included into the regression model – only the observed feedback

of the K nearest neighbors of a target user or item are incorporated.
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If model coefficients were determined using an optimization algorithm, the memory-based CF

approach equals a multiple linear regression model [4]. Suchlike, one model for each user or item

is learned from the available feedback. Ideally, those models are capable of generalizing the given

observed feedback. In case of the user-based algorithm, a user model is learned using observed

feedback of this particular user on training items as dependent variables and feedback of other

users on the respective items as independent variables. In case of the item-based algorithm,

an item model is learned using observed feedback on this particular item of all training users

as dependent variables and feedback on other items as independent variables. Such models

are expected to reveal the optimal linear relationships between the numeric feedback of users

or items while exploiting the interdependency among items or users, respectively [4]. When

learning a user model in case of the user-based algorithm, similarly rating users are expected

to yield coefficients which are related as well. Whereas when learning an item model in case

of the item-based algorithm, similarly rated items are expected to result in related coefficients.

Finally, the memory-based CF algorithm can be extended to not just incorporate a subset but

all users or items into the regression model. This extension bears the potential to incorporate

more valuable information but is subject to the risk to introduce noise into the model.

Optimization-based neighborhood models, intended to learn the model coefficients by only

incorporating the local neighborhood of a target user or item, are proposed in several works

[180, 27, 259, 3]. By replacing the normalized similarity coefficient suv/|suv| with the unknown

parameter s∗
uv, the feedback r̂ui of target user u on item i can be modeled in the user-based

approach as

r̂ui = r̄u +
∑

v∈Ni(u)

s∗
uv(rvi − r̄v) (3.18)

Analogously to memory-based approaches, the neighborhood Ni(u) of a target user u are de-

termined using Cosine similarity or Pearson correlation. The similarity weights s∗
uv, however,

are proposed to be learned for this particular neighborhood. The objective function L(s∗
u) in-

troduced in [180] uses the aggregated least-squares between observed rui and predicted feedback

r̂ui. As the errors can be added over all items i rated by a user u, one objective function is

set up for each individual user u. Assuming Iu to be the subset of items rated by user u, the

objective function can be written as

L(s∗
u) =

∑

i∈Iu

(rui − r̂ui)
2 =

∑

i∈Iu

(rui − [r̄u +
∑

v∈Ni(u)

s∗
uv · (rvi − r̄v)])2 (3.19)

which is minimized using optimization solvers as, e.g., GD or Stochastic Gradient Decent (SGD).

To cope with overfitting, the optimization variables s∗
uv are proposed to be penalized and model

complexity reduced by adding a regularization term to each objective function L(s∗
uv) [180],

yielding

L(s∗
u) =

∑

i∈Iu

(rui − r̂ui)
2 + λ||s∗

uv||22. (3.20)

Regularization can be controlled with the user-defined parameter λ. Using the L2-norm of s∗
uv
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as regularization term is referred to as ridge regression in the context of linear regression [149].

The item-based application can be implemented analogously to the user-based approach. In

this case, the regression coefficients ŝij to be learned represent the correlation between an item

i and the nearest neighboring items Nu(i) which are rated by user u. A popular regression

approach in relation to this item-based algorithm is the Sparse Linear Method (SLIM) proposed

in [246]. SLIM is intended to learn a sparse coefficient matrix to model feedback given to

individual items. In particular, SLIM is designed to work with non-negative feedback values

which do not require mean-centering and additionally promote interpretability.

The main difference to equation 3.20 is the extension to elastic-net regularization, combining

L2- and L1-norm regularization. Additionally to L2-norm regularization, penalizing overall large

coefficients, L1-norm regularization favors sparse solutions for s∗
ij , leading to many coefficients

having zero value [149]. This property can be regarded as an embedded attribute selection

method (section 3.1.5). The additional advantage of sparse solutions is twofold: predictions can

be expressed as more interpretable linear combination of only a small number of related items

and the computational expenses are reduced. Additionally, SLIM does not restrict the regression

coefficients to only the neighborhood Nu(i) of target item i but includes all available items I.

Here, the feedback r̂ui of user u on item i is predicted as aggregation of all available feedback

ru of u on all other items.

r̂ui = rT
u s∗

i (3.21)

Hence, the regularized optimization problem to be solved can be formulated as independent

objective functions

L(s∗
i ) =

1

2
||ri − Rs∗

i ||22 +
β

2
||s∗

i ||22 + λ||s∗
i ||1 (3.22)

which can be added over all items i ∈ I. ||s∗
i ||2 and ||s∗

i ||1 are the entry-wise L1- and L2-norms

of vectors s∗
i , respectively. The additional constraint s∗

ii = 0 facilitates the target item i to be

excluded and trivial solutions to be avoided. Furthermore, the non-negativity constraint s∗
ij ≥ 0

ensures the learned coefficients to represent positive relations between items, i.e. the impact of

each feedback, which additionally enhances interpretability.

Typically, R is employed as training and test data to find an optimal aggregation coefficient

matrix S∗ ∈ R
|I|×|I| concatenating all s∗

i and which minimizes the error on reproduced user

feedback r̂i = Rs∗
i . Therefore, the available feedback on the |I| items stored in R is divided

into training and test instances. The training instance are utilized for model training, whereas

the remaining observed feedback is used for performance evaluation. Each column s∗
i of S∗

corresponds to the regression coefficients of one item model.

An extension to SLIM published in [247] focuses on incorporating item side information in

order to improve recommendation performance. Here, a number of approaches are compared

which constrain the SLIM model by the relations between items or link side information into

the model. A modification of the SLIM algorithm is applied for therapy recommendation in

chapter 5.
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3.2.2.3 Advantages and Disadvantages

When comparing model-based and memory-based CF methods, the main advantage of memory-

based methods is their simple and intuitive approach. Recommendations can intuitively be

justified, interpreted and explained. In the user-based setting, the list of neighboring users

along with the observed feedback a recommendation is based on can be presented to the target

user. Moreover, in contrast with model-based methods, memory-based CF do not require ex-

tensive data collections as training data [288, 333].

However, as mentioned above, too sparse user-item feedback matrices R can results in unreliable

and biased recommendations or cold start issues [333]. Feedback overlap across users is essential

to be capable of comparing users and computing similarity reliably. Additionally, as only items

can be recommended for which feedback is provided by neighboring users, large sparsity can also

limit the item coverage, i.e. the percentage of items the algorithm can provide recommendations

for [152].

Furthermore, for large datasets memory-based CF algorithms suffer from scalability issues which

directly depends on the number of correlations between users or items to be computed [203].

With increasing number of users, memory and time expenses increase exponentially for the

user-based approach. The same is true for increasing items in case of the item-based approach.

Compared to model-based approaches, a basic memory-based method doesn’t require computa-

tionally expensive training. However, calculating feedback predictions during runtime requires

to load and search the entire database. In case of large datasets this search can become very

expensive or infeasible. This is particularly crucial as such systems typically are supposed to

react immediately to online requirements and make fast recommendations. To overcome this

issue, nearest neighbors are typically pre-computed in an offline training phase which reduces

the complexity of the computation during the recommendation phase. However, this calculation

needs to be updated depending on the frequency of dataset changes. And, even though offline,

the neighborhood computation can become very complex if the number of users or items be-

comes large.

Besides model-based methods, another approach to handle the computational burden during

runtime is to apply clustering algorithms in a preprocessing phase. Pre-computed clusters allow

to search for similar users in a reduced and highly similar space. Here, however, a trade-off

needs to be found. With decreasing number of clusters, i.e. granularity, this clustering approach

is capable to improve scalability but at the expense of recommendation quality and vice versa.

[333, 203, 4]

3.2.3 Hybrid Recommender Systems

To cope with the aforementioned disadvantages of the introduced RS methods and improve re-

commendation performance, it is a powerful strategy to combine different types of RS algorithms

or models of the same type, respectively. Such combinations of two or more recommendation

techniques are denoted as hybrid recommender systems in the literature [48, 4]. Table 3.2 sum-

marizes a general taxonomy of recommender system hybridization techniques.
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Table 3.2: Taxonomy of hybrid RS based on [48]

Method Description

Weighted Preference predictions of several RS are combined to produce a single
unified rating prediction by computing a weighted aggregate. The
results of multiple RS can either be averaged or linear regression-
based algorithms can be applied [320, 179] to determine appropriate
weights.

Switching The algorithm switches between various RS depending on the cur-
rent requirements. This approach was originally motivation to cope
with the cold start problem, where content-based and collaborative
recommender were combined for switching systems [48].

Mixed Recommendations from several different RS are presented at the
same time.

Feature combination Features from different data sources are combined and utilized in
a single recommender algorithm. One approach is to enhance the
feedback matrix R by adding side information, i.e. user or item
features [330, 247].

Cascade One RS refines the recommendations given by another RS.

Feature augmentation The output of one RS is used to create input features for another RS.

Meta-level The entire model learned by one RS is used as input to another RS.

3.3 Machine Learning

3.3.1 Overview

In typical classification problems the task is to classify an unknown observation x ∈ X comprising

M attributes into a defined category, i.e. class, expressed as target label y. In applications

where the target label y is an continuous variable, the task is denoted as regression problem.

The objective of ML techniques is to automatically learn the parameters of a model that is

capable of generalizing the given set of training observation. The learned model is supposed to

be capable of mapping any input vector x to the appropriate category or continuous target value

y, i.e. performing the stated classification or regression task. As training observations are given

as pairs of attribute vectors and known target labels (x, y), such applications are also known as

supervised learning problems. [33]

There exists a variety of classification or regression algorithms applied in the medical domain

[17] and which can also be transfered to the aforementioned CF setting. Classification or regres-

sion algorithms can be contrasted depending on whether classes can be separated or continuous

target value computed using linear or non-linear functions. Linear classification approaches, on

the one hand, e.g. Logistic Regression (LogR), Naive Bayes classifier (NB), or Support Vector

Maschine (SVM) with linear kernel, compare linear combinations of input attributes with a

threshold to decide on class membership, i.e. they have a linear decision boundary. Linear Re-

gression (LR), as already introduced in section 3.2.2.2, computes the dependent variables value

as linear combination of the input attributes. Non-linear approaches, on the other hand, are
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capable of learning more complex non-linear relationships between input attributes to determine

output value or class membership. One approach is to transform data to a new representational

spaces (based on the kernel functions) to apply linear classification techniques, e.g. Multi Layer

Perceptron (MLP) or SVM with non-linear kernel. However, data transformation hampers in-

terpretability of the classification process and entails black-box characteristics.

Another way to categorize ML algorithms is the differentiation between parametric and non-

parametric models. Whereas the first abstract the training data by adjusting an a priori defined

finite set of parameters, the latter cannot be described by a fixed set of parameters but the struc-

ture is determined by the data. Whereas all the aforementioned algorithms can be categorized

to the group of parametric models, the instance based KNN algorithm and the family of DT

classifiers and regressors are representatives of the non-parametric approaches. [33]

Especially in the context of medical application, besides the ability to generalize the given train-

ing observations, explainability and interpretability of classification or regression results but also

the capability of handling missing values can determine the algorithm selection.

For this work, DTs and ensembles of DTs, HMMs, and ANN are of particular interest and

are explained more in detail in the following sections.

3.3.2 Decision Trees

One of the most popular and successfully applied family of classification and regression al-

gorithms are classification and regression trees, also termed decision trees (DTs). Depending

on the algorithm used, such DTs are capable of handling both, quantitative and qualitative

data types, i.e. heterogeneous input data, and can even be able to cope with missing values.

Additionally, DTs embed feature selection (section 3.1.5) during training which makes them

rather robust to irrelevant input variables. Dependent on their complexity, DTs can facilitate a

comprehensible, i.e. interpretable decision making process. [149]

A DT can be considered as a hierarchically arranged number of nodes and edges. Each node

represents a decision rule which is applied to any observation vectors x passing through the tree.

Suchlike, complex decision problems are divided into a hierarchy of simpler tasks. Depending

on the input variable, the observation will end in a leaf node. The empirical class distribution

from the training process are stored for each leaf. Suchlike, for each sample to be classified a

probabilistic class membership can be determined [226, 275]. In case of a regression task, the

actual prediction value for each leaf is the weighted mean of the training data stored in the

respective leaf. Hence, complex decision problems are divided into a hierarchy of simpler tasks.

Finding suitable decision rules at the tree nodes is part of training a DT. This decision tree

induction is a recursive process which develops the tree top-down, i.e. starting from the root

node by generating new nodes until a stop criterion is reached. For each node an attribute

along with a threshold or rule, depending on the data type, needs to be selected. This discrete

splitting criterion is one major characteristic of different DT algorithms. However, all those

splitting criteria have in common to aim at increasing a measure the purity or homogeneity by

dividing the training data. In appendix F.1, decision tree induction techniques are explained.

Additionally, pruning methods to prevent overfitting and how DTs handle missing values is
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detailed.

Besides being one of the most studies machine learning algorithms a key advantage of decision

trees is the fact that they are simple to understand and to interpret. DT models can be easily

visualized or transfered into if-then-rules. However, they are prone to overfitting and lack

generalization capabilities if grown to deeply. A further significant issue with decision trees is

their high variance resulting in a high tendency to suffer from instability. Small variations in

the data can provoke completely different trees. [149]

3.3.3 Decision Tree Ensembles

Combining different models learned from the data, so called ensemble models have proven to

be a powerful strategy to generate models that improve classification or regression performance

and generalization capabilities of single models.

Classifiers or regression models of same type or different models (stacking) can built up an

ensemble. Generally, there are two types of combining models. Model selection, i.e. training

and selecting the appropriate model for specific local areas of the feature space and model fusion,

i.e. training individual models on the entire attribute space and combining their output [190,

271]. The latter approach combines multiple biased or high variance classifiers, i.e. base learner

which fail on proportions of the data, to form one powerful predictor. Combining the outputs

of those diverse models into one single prediction, e.g. taking (weighted) votes for classification

or computing (weighted) averages for continuous outputs the individual classifier or regressor

provides, more reliable and accurate decisions can be yielded [39].

A crucial keystone shared by those ensemble generation strategies is the concept of diversity.

The intuition is, by combining diverse models which fail on different data, to reduce the overall

error. This overall error of a classifier or regressor can, according to [149], be decomposed into

the two sources, the algorithm’s bias and variance. The intrinsic bias, on the one hand, is

regarded as the error rate on a hypothetical, infinitely large training data. The variance, on the

other hand, is associated with errors stemming from variations in a given dataset of finite size.

In the following, the two most widely used ensemble strategies are introduced: bagging and

boosting. Both strategies can be assigned to the classifier fusion approach but differ in the

algorithms generating the individual models and in the way how they are merged.

In case of bagging, the intention is to combine base models which are characterized by high

variance but low bias. Suchlike, the overall variance component and consequently the overall

ensemble error can be reduced. Consequently, assuming a base model which is characterized by

high variance but low bias, the most popular approach to achieve classifier diversity is to use

different training sets derived from the overall training data for training. [271]

In case of boosting, the bias is intended to be decreased. Here, multiple individual classifiers,

having high bias, are combined into a more powerful ensemble of classifiers.

Building classifier ensembles has proven to be effective for a wide variety of base learner [198].

The focus of this work, however, is on ensemble generated from DTs. Tree bagging and boosting

have proven to be both very effective and to provide state-of-the art results on a wide range of

problem such as classification but also regression tasks [271, 62]
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As described above, the DT induction process is characterized by high variance but low bias if

building deep DTs. As a consequence, small variations in the dataset, features or any parameters

used for growing a tree typically lead to differing decision trees. On the other hand, only shallow

DTs are characterized by high bias. These features make DTs a suitable choice for employing

both ensemble building strategies, bagging and boosting, to improve the performance of single

base classifiers. Bagging and boosting techniques for DTs are detailed in appendix F.1.4 and

also the interpretability of DT ensembles is discussed.

3.3.4 Hidden Markov Models

Markov models are capable of modeling a stochastic processes in which the current state st

at a discrete point in time t depends on previous system states. In case of first-order Markov

processes, st+1 depends on the current state only, rather than on the entire history of the

past process (limited horizon). The transition into the subsequent state st+1 is defined by the

transition probabilities aij = P (st+1 = xj |st = xi). HMMs are characterized by an underlying

stochastic process of hidden states which, however, can only be viewed by emitted observable

symbols ot. In each state xj and point in time t, a symbol ot is emitted with the probability

bj(ot) = P (ot|st = xj). Both, transition probability aij and emission probability bj(ot) depend

on the current state only and do not change over time (time-invariance). Overall, a HMM is

defined by the five-tuple (X , Y, A, B, Π) with the model parameters summarized in table 3.3.

Figure 3.3 visualizes a HMM schematically. HMMs are applied in chapter 7 in the context of

sleep stage classification.

Table 3.3: HMM model parameters [277]

Description Parameter

Number of states N
Number of features M
State alphabet X = {x1, x2, ..., xN }
Output alphabet Y = {y1, y2, ..., yM }
State sequence S = (s1, s2, ..., sT ), st ∈ X
Observation sequence O = (o1, o2, ..., oT ), ot ∈ Y
Transition probabilities A = {aij}, 1 ≤ i, j ≤ N
Emission probabilities B = {bj(ot)}, 1 ≤ j ≤ N
Initial distribution Π = {πi}, 1 ≤ i ≤ N

The literature distinguishes three fundamental problems related to HMMs [277]:

(1) Evaluation problem: Given a model λ = (A, B, Π) and an observation sequence O =

(o1, o2, ..., oT ), how to compute the probability of the observation sequence P = (O|λ) efficiently?

(2) Decoding problem: Given a model λ = (A, B, Π) and the observation sequence O =

(o1, o2, ..., oT ), what is the most likely underlying state sequence S = (s1, s2, ..., sT )?

(3) Training problem: Given an observation sequence O = (o1, o2, ..., oT ), how to adjust the

model parameter λ = (A, B, Π) in order to maximize P = (O|λ)?
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Figure 3.3: Schematic structure of a Hidden Markov Model.

3.3.4.1 Decoding Problem

In order to deduce reliably the hidden states on the basis of a given emission sequence, both

the transition probabilities aij and the emission probabilities bj(ot) must be taken into account.

The most common approach to solve the decoding problem is the Viterbi algorithm [367] which

determines the most probable state sequence S using the model parameters λ and the given

emission sequence O

argmax
S

P (S|O, λ). (3.23)

Under consideration of the previous state and the emitted symbols, the Viterbi algorithm calcu-

lates for each point in time the probability of each state. Since each state probability indirectly

depends on all states that have been propagated, the most probable path is recursively selected.

3.3.4.2 Evaluation Problem

In order to compare different models, the probability P = (O|λ) is determined. An efficient

method of calculating this probability offers the forward-backward algorithm. The forward vari-

able

αi(t) = P (o1, o2, ..., ot, st = xi|λ) (3.24)

is the probability that the process is at time t in state xi, with respect to the previous emission

sequence. The backward variable

βi(t) = P (ot+1, ot+2, ..., oT |st = xi, λ), (3.25)

on the other hand, takes the subsequent emission sequence into account. Both variables are

combined to yield the requested probability

P (O|λ) =
N

∑

i=1

P (O, st = xi|λ) =
N

∑

i=1

αi(t) · βi(t). (3.26)

3.3.4.3 Training Problem

In case of a supervised learning task, i.e. given labeled training data, the transition probabilities

A can be derived from observed statistics and the emission probabilities B for each state from
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Probability Density Functions (PDFs), such as the multivariate Gaussian distribution function

for continuous outputs [226].

In case of unsupervised learning tasks, the training problem can be solved using the Baum-Welch

algorithm [277]. This variant of the Expectation–Maximization (EM) algorithm estimates the

model parameters suchlike that the likelihood of the emission sequence in the training samples

is maximized

argmax
λ

P (O|λ). (3.27)

3.3.5 Artificial Neural Networks

3.3.5.1 Feed Forward Neural Network

ANNs are composed of several simple computing units, i.e neurons, typically arranged in lay-

ers but differing in the network’s architecture. The Feedforward Neural Network (FNN) is

considered the most fundamental network architecture, whose neurons are unidirectionally con-

nected layer by layer from the network input to the network output. Both, the number of hidden

layers and neurons per layer are hyperparameters. FNNs composed of at least one hidden layer

are also denoted as MLPs. [127]

For each neuron j of layer l, as pictured in figure 3.4, the activation al
j is computed as

al
j = σl(zl

j) = σl(
∑

n

xn wl
n,j + bl

j) with l = 1 (3.28)

al
j = σl(zl

j) = σl(
∑

h

al−1
h wl

h,j + bl
j) with l > 1 (3.29)

According to equation 3.28, the activation state of a neuron is determined by an activation

function applied to the network input zl
j , i.e. the weighted sum of neuron inputs and additional

threshold value (bias). The activation function, such as sigmoid function, tanh function, or

Rectified Linear Unit (ReLU), is essential to introduce non-linearity into the model and enable

the approximation of nonlinear functions. [127]
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Figure 3.4: Schematic structure of an artificial neuron.

In total, the neural network defines the representation function ŷ = f(x, θ) of an input vector x

to an output ŷ and with the network describing parameters, i.e. connection weights, θ. The input

vector x is layer-wisely propagated through the network. Whereas the first layers activations
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a1 (l = 1) are computed on the basis of x, activation states of all following layers (l > 1) are

computed sequentially on the basis of the activations al−1 of upstream layers. Activation aL of

the final layer forms the output ŷ of the network. The output layer’s activation function depends

on the ML task (regression, binary or multi-class classification). In case of a regression problem,

a simple linear function or ReLU can be applied. Whereas in case of binary classification, the

sigmoid function as introduced is typically applied, in case of a multi-class classification problem,

the sofmax function maps the output layer’s input to a probability distribution over K classes,

each represented by an output neuron j. [127]

σsoftmax(zj) =
ezj

∑K
k ezk

(3.30)

The aim of network training is to optimize its parameters θ suchlike that an objective function

L(yi, xi, θ) = L(yi, ŷi) is minimized for a set of training samples (xi, yi), i.e. the loss between

predictions ŷi and target labels yi is reduced. Also the applied objective function is determined

by the ML task. The loss of a regression task can e.g. measured by Mean Squared Error (MSE).

The loss of a binary or multi-class classifier is typically measured by the cross-entropy between

predicted and actual distribution one-hot-encoding over K classes.

L(yi, ŷi) =
K

∑

k=1

yk − log(σsoftmax(zk)) =
K

∑

k=1

yk − log(ŷk) (3.31)

For parameter optimization of neural networks, typically SGD variants are applied. In case of

the mini-batch SGD, the objective function’s average gradients regarding the parameters to be

optimized are determined according to equation 3.32 using subsets of size m of the training

data (mini-batch). For each mini-batch, the resulting gradients are used to update the network

parameters according to equation 3.33 with the learning rate µ. The respective parameters are

updated according to this error fractions δl
j . Within each epoch, all training samples are applied

once for model training.

g = ∇θ
1

m

m
∑

i

L(xi, yi, θ) (3.32)

θ ←− θ − µ g (3.33)

The SGD algorithms are realized by means of the backpropagation of errors. The loss is propag-

ated backwards layer by layer through the network and the error fraction δl
j of each layer l

and neuron j is computed as partial derivative of the objective function with respect to the

parameters to be optimized. The respective parameters are updated according to δl
j .

3.3.5.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a particular type of FNNs, which is special-

ized in processing data with a grid-like structure, such as images (2D grid of pixel values) or

time series (1D grid of samples) [127]. CNNs differ from FNNs by applying a convolution op-
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eration (i.e. cross-correlation) instead of ordinary matrix multiplication in at least one of its

layers. Figure 3.5 details the procedure of a convolutional layer with a 1D input vector xi and

1D filter (kernel) comprising three weighting parameters. By shifting the kernel over the in-

put sequence (plus optional zero padding) with defined step size s (stride) and cross-correlation

computation, a feature map is created. Within a convolutional layer, a number of different filters

are usually applied which yield different feature maps. Within a training process as described

in section 3.3.5.1, the kernel parameters are optimized to extract meaningful features from the

input sequence. Downstream pooling layers reduce the number of attributes to be processed by

local application of a statistical function (maximum, mean) to the feature maps. The feature

maps of the final CNN layer are usually concatenated to form an input vector for an MLP for

classification. The typical structure of a complete CNN is shown in figure 3.6.
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Figure 3.5: Discrete convolution of an input sequence x with the filter kernel wk and the result
sequence, i.e. feature map, fk.

The motivation behind CNNs can be summarized by the following three main concepts [127]:

(a) Sparse connections: Convolution of a small kernel with a larger input sequence requires

both, a smaller amount of parameters and a smaller number of operations to process the input

compared to fully connected FNNs.

(b) Shared parameters: The kernel parameters only need to be learned once to detect a specific

feature within the entire input sequence.

(c) Translation invariance: Due to the shared parameters, a specific feature can occur at

different places in an input sequence and will generate the same output representation, even

though at different position in the output. This invariance is additionally supported by the use

of pooling operations.

In this work, CNNs are applied in chapter 7 in the context of sleep stage classification and

Parkinson’s Disease (PD) patient assessment.

3.3.5.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) represent another type of neural networks, which are special-

ized in processing sequential data. RNNs are characterized by the extension of the computational
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Figure 3.6: Schematic structure of a Convolutional Neural Network.

model by feedback cycles and states, which allows the incorporation of temporal relations. [127]

Figure 3.7 shows the exemplary computational model of a RNN with a recurrent hidden layer

and an ordinary output layer for processing of an input sequence x consisting of t ∈ {1, ..., τ}

vectors. Starting from an initial state h0, the forward propagation of the input sequence x

generates a prediction per time step t according to

h(t) = σlh(W h(t−1) + U x(t) + blh) (3.34)

ŷ(t) = o(t) = σlo(V h(t) + blo) (3.35)

with the respective weight matrices U, V, W, and bl. A hidden layer neuron’s state can be seen

as summary of the past input sequence and the current input value. If it is assumed that the

prediction ŷ(t) benefits from the incorporation of past and future values, even a bi-directional

RNN can be applied. To do so, the recurrent hidden layer is extended by a parallel sub-layer,

which is operating in the reverse direction. [127]

Parameter optimization of RNNs is done analogously to FNNs using the backpropagation al-

gorithm described in section 3.3.5.1, however, on the basis of the unfolded model (backpropaga-

tion through time).

The unfolded RNN representation illustrates two advantages regarding the processing of se-

quences:

• The RNN’s input size is not limited to a predefined sequence size as the model is defined

in terms of state transitions.

• For each time step t of a sequence, the processing of an input is realized on the basis of

the same model instead of learning separate parameters for each time step.

Hence, the required number of parameters to extract time-dependent features from an input

sequence is significantly reduced and extraction of sequential patterns is generalized to be applied

to any input sequence length. [127]
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Figure 3.7: RNN in compact and unfolded representation.

A RNN architecture, which is particularly developed to overcome training-related difficulties

(exploding and vanishing gradients [157]) and which facilitates to learn long-term dependencies,

is the Long Short-Term Memory (LSTM) [157, 123, 127]. The comparison of an ordinary

RNN neuron with a LSTM cell is shown in figure 3.8. In contrast to ordinary RNN neurons,

LSTM cells comprise multiple neurons which interact with each other and control information

exchange. The internal cell state C(t) represents the key element of the LSTM cell. With the

help of forget gate and input gate, information can be extracted or added from the respective

input in a controlled manner. The output gate finally determines which portions of the cell state

are included in the output h(t) of the LSTM cell. The inner cell state C(t) itself forms a path

along the time steps, which allows an information flow with few simple interactions and thus

simplifies the feedback of the error signal through the network.
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Figure 3.8: Comparison of a RNN neuron with a LSTM cell.

Also LSTMs networks are applied in chapter 7 in the context of sleep stage classification.
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3.4 Data Preprocessing

3.4.1 Data Normalization

In many applications, attributes are measured in various different units or are characterized by

significantly different variability. When computing distance or similarity in such a vector space,

but for the application of most ML methods, attribute rescaling is an essential pre-processing

step to equalize the attributes’ impact.

Min-max normalization rescales each element in an attribute vector x to the range [0, 1], ac-

cording to

x̂ =
x − min(x)

max(x) − min(x)
(3.36)

Standardization linearly rescales each attribute to have zero mean and unit variance

x̂ =
x − x̄

σ
(3.37)

where x̄ is the mean value and σ the standard deviation of the attribute vector x, respectively.

Standardization results in the covariance matrix of the data to be equal to its correlation matrix.

3.4.2 Missing Value Imputation

In the medical context, missing data is a pervasive challenge. The causes range from patients’

lacking willingness to give information or be examined, over insufficiently standardized data

collection forms, up to faulty transfer of data from one source, e.g. paper documentation, into

another system, e.g. an electronic medical record [242, 262]. The majority of typical machine

learning algorithms are not capable of dealing with missing values. There are classification

and recommender system algorithms which can handle incomplete data to a limited extend.

However, too extensive sparsity and the absence of particularly characteristic attributes also

distorts classification and recommendation results in those methods and weakens the validity of

results and generalizability of models.

Based on the relationship between the mechanism underlying the missing data and the actually

missing and observed values, three types of missing data are distinguished as listed in table 3.4.

Obtaining unbiased estimates in case of Not Missing At Random (NMAR) requires domain

knowledge or modeling of the missing data mechanism [293, 164, 132, 262]. Nevertheless, also

the fact that an attribute is missing can be a valuable information as was shown in [202, 313].

In case of Missing Completely At Random (MCAR) and Missing At Random (MAR), depending

on the strategy, imputation methods introduce no or only little bias. A variety of methods for

dealing with missing or unknown values are proposed and evaluated in the literature [241, 173,

132, 164, 202, 262, 92, 164] which are summarized in appendix F.3.
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Table 3.4: Missing data types distinguished according to the relationship between the mechanism
underlying the missing data and the actually missing and observed values [293]: Miss-
ing Completely At Random (MCAR), Missing At Random (MAR) and Not Missing
At Random (NMAR).

Type Description

MCAR The missing data mechanism of a considered attribute is unrelated to the
values of any other attribute, whether missing or observed.

MAR The missing data mechanism of a considered attribute is unrelated to the
missing values of this attribute but is conditional on observed values of other
attributes.

NMAR The missing data mechanism is related to the missing values and hence is
not ignorable.

3.5 Evaluation Metrics

The quality of RS are typically assessed concerning (1) accuracy metrics, which evaluate the

performance of the preference estimation task, and (2) decision support metrics, which evaluate

the quality of the derived top-N list of recommendations [153, 140].

For this purpose, it is either common to evaluate quality offline and retrospectively based on

a test dataset Rtest, comprising feedback on previously consumed items, or by conducting live

user experiments. Retrospective evaluation suffers from the drawback that appropriateness of

a recommendation can only be determined for the often limited number of actually consumed

items. In the context of a therapy RS problem this implies that, as the ground truth is only

available for actually applied therapy options and is unobserved for all other options, evaluation

metrics can only be computed on those applied therapies. However, this approach facilitates, in

comparison with live experiments, much quicker and more economical algorithm evaluation and

comparison [153].

The metric typically applied to evaluate the accuracy of numerical preference estimates, such

as predicted rating, is the Root Mean Square Error (RMSE) [153, 140]. RMSEui is computed

between all estimated r̂ui and observed feedback rui of user u on items i captured in Rtest,

yielding the average error for a test user u

RMSEu =
1

|Itest|

√

√

√

√

√

|Itest|
∑

i=1

(r̂ui − rui)2 (3.38)

To obtain the overall test performance, RMSEu is further averaged over all test users Utest.

RMSE reflects the estimation error in the same value domain as the user feedback. This allows

the user – here the medical practitioner – to be provided with an interpretable support for his

decision-making.

Decision support metrics to evaluate ranked lists of items are derived from Information Re-
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trieval (IR) research [153, 140]. Such lists usually rank all available items according to there

relevance, however, only a top-N list of recommendations is presented to the user. Accordingly,

ranked lists are evaluated up to this predefined cutoff N .

A widely used decision support metric is precision@N , which measures for a test user u the

proportion of overlapping items between actually consumed (TPu) and all recommended (TPu

and FPu) items in the top-N list

precision@Nu =
TPu

TPu + FPu
=

1

N
TPu (3.39)

Note that the denominator, i.e. the number of recommended items usually is N but becomes

the number of actually consumed items if fewer then N items are consumed in order to make

precision@N possible to become 1. To obtain the overall test performance, also Precision@Nu

is typically averaged over the test dataset, i.e. all test users u.

Furthermore, Average Precision (AP)@N for a recommendation list of length N can be derived.

AP@N additionally takes the position in the top-N list into account. To do so, precision@n

at each positions n = 1...N are computed and averaged over the number of recommended items

N . As above, the denominator becomes the number of actually consumed items if fewer then

N items are consumed. However, only precision@n are included for which a TPu is observed

which is controlled by the indicator δ(n)

AP@Nu =
1

N

N
∑

n=1

TPu · δ(n)

n
(3.40)

MAP@N , finally, averages those AP@N over the test dataset, i.e. all test user u. [153, 140]

The Cohen’s Kappa coefficient [191] is a statistic to measure inter-rater agreement between

two raters. The statistic is applicable to categorical attributes and takes the possibility of the

agreement occurring by chance into account. Cohen’s Kappa is defined as

κ =
po − pe

1 − pe
(3.41)

with the observed agreement between raters po and the expected agreement by chance pe. As-

suming N elements to be rated, i a distinct category, fii the true positives, i.e. the diagonal

elements of the confusion matrix, fi+ the sum of row i and f+i the sum of column i of the

confusion matrix, po and pe are defined as

po =
1

N

g
∑

i=1

fii (3.42)

and

pe =
1

N2

g
∑

i=1

fi+f+i (3.43)

Cohen’s Kappa is defined on the interval [−1, 1] and can be categorized as defined in [191].
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The data available for the development and evaluation of an exemplary therapy recommend-

ation system have been provided by and were worked up with the Clinic and Polyclinic for

Dermatology, University Hospital Dresden. It represents the routine care of patients suffering

from different types of the chronic autoimmune skin disease Psoriasis. Psoriasis is particularly

well suited for data-driven treatment recommendation, since there is only a moderate number of

systemic therapy options and treatment effects are readily measurable, occur within short time

intervals and can be relatively reliable associated with the treatment applied. The following

section 4.1 gives a background on Psoriasis. Sections 4.2, 4.3, and 4.4 detail the extraction of

the data from health records, the content and representation of the data, and details on the

applied cleaning, transformation and preprocessing strategies, respectively. Finally, section 4.5

provides some descriptive statistics to summarize the provided dataset.

4.1 Psoriasis

4.1.1 Epidemiology

Psoriasis can be regarded as one of the most common dermatological diseases. Due to its

chronic and relapsing course, typically the prevalence is reported in epidemiological studies.

Even though the occurrence of Psoriasis differs among ethnic groups and geographic regions,

the estimated prevalence within Europe is distributed rather homogeneously between 2 % and

3 %. In Germany, the prevalence is estimated to be 2.53 %, which amounts to approximately

2 million regularly treated patients with men (2.71 %) being slightly more often affected than

women (2.31 %) [302, 13]. Adults (age 50 - 79, prevalence 3.99 % - 4.18 %) are more affected

than children and adolescent (age < 20, prevalence 0.73 %) [302]. Psoriasis is incurable and

requires lifelong treatment and rehabilitation. Considering direct medical costs for statutory

health insurance and the patient himself as well as indirect costs caused by absenteeism and

reduced productivity, overall mean cost-of-illness are estimated to amount to 5000 € per year

and patient according to [162, 240]. However, treatment of moderate or severe cases typically

exceeds the costs for mild cases by far and can require hospital admission. In 2014, about 20.000

patients suffering from Psoriasis were treated stationary [162, 240].

4.1.2 Pathogenesis

Psoriasis is assumed to be an immune-mediated disorder which is caused by genetic dispositions

[138, 192, 170] and can be supported by associated risk factors as e.g. alcohol consumption,
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smoking, stress, overweight, climate, infectious diseases and certain medications such as beta-

blockers or psychotropic drugs. However, it is still controversial whether the association with

especially alcohol consumption and stress is not based on a reversed causality caused by the

psychological burden of the disease [357].

Psoriasis is a chronic disorder. Symptoms occur with varying duration and can be interrupted by

symptom free intervals. In spite of great advances in the understanding of Psoriasis pathogenesis

within the recent years, only little is known about natural history, determinants of spontaneous

remission and the role of age and comorbidities [138].

4.1.3 Symptoms, Diagnosis and Comorbidities

Morphology, distribution, and severity of Psoriasis can be highly variable [192]. According to

[357], three main forms of Psoriasis can be distinguished, however, often occurring in parallel,

which are introduced briefly in the following.

(1) Psoriasis vulgaris (figure 4.1 (top)), also denoted as Plaque psoriasis, is the by far most

common Psoriasis form and is characterized by a pathologically increased formation of epidermis

cells, which leads to a scaling of necrotic cells. Typical symptoms are acute exacerbations

of erythematous skin lesions, so called plaques, that are covered with dead tissue. Patients

usually suffer from elevated sensibility as well as pruritus, burning and pain on the affected

areas [170, 192, 138, 357]. Psoratic lesions are typically located at the knees, elbows, and scalp.

In severe forms of Psoriasis vulgaris also breast, back, arms, and legs are extensively affected

[357]. Psoriasis inversa is a side-specific variant of Psoriasis vulgaris occurring at intertriginous

sites and is characterized by shiny and red lesions which are typically free of scales [138, 192,

170]. An acute form of Psoriasis vulgaris, known as Psoriasis guttate and characterized by small

papules erupting on the trunk, is typically developed by children and adolescents only (figure 4.1

(bottom right)). Psoriasis guttate either diminishes or is transformed into a classic Psoriasis

vulgaris in one third of the cases [138]. Furthermore, especially patients suffering from Psoriasis

vulgaris develop in 50 % of the cases additional disease related nail changes [138, 357].

(2) Psoriasis postulosa, a rare Psoriasis form, is characterized by reddening and small, non-

infectious pustules. Here, depending on the affected body region, the Psoriasis postulosa pal-

mopantaris form, occurring at the palms and the sole of the feet, is distinguished (figure 4.1

(bottom left)). Psoriasis postulosa is frequently associated with fever and fatigue besides the

skin symptoms [138].

(3) Psoriatic arthritis (PsA), a rheumatic form of Psoriasis, is characterized by swelling and

pain in the joints of fingers, toes or vertebrae. The symptoms are very painful, hinder mobility

and can lead to irreversible destruction of joints. Psoriatic arthritis is typically developed as

comorbidity accompanying other Psoriasis forms, however, in rare cases also occurs without

additional skin symptoms [138, 357, 170].

The various manifestations of the Psoriasis disorder and clinical phenotypes and localizations

are summarized in table 4.1.
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Table 4.1: Forms of Psoriasis manifestations along with International Classification of Diseases
(ICD)-10 codes based on [302] and [357]. The given frequency is computed from the
numbers given in [302] and is the proportion of occurrences relative to all Psoriasis
cases.

Name ICD Main Symptoms Localization Freq.

Psoriasis
vulgaris

L40.0 Erythema, scaling,
pruritus

Head, elbow, knee, but
also chest back, arms
and legs

80.10 %

Psoriasis
pustulosa

L40.1 Reddening and
noninfectious pustules,
frequently associated
with fever and fatigue

Whole body 2.52 %

Psoriasis
pustulosa
palmoplantaris

L40.3 Reddening and
noninfectious pustules,
frequently associated
with fever and fatigue

Palm and sole of the
foot

5.0 %

Psoriasis
guttata

L40.4 Sudden appearance of
round lesions

Face, chest and back 2.28 %

Psoriasis
arthritis

L40.5 Reddening, swelling
and pain in the joints,
stiffness of the joints
and constraint
movements

Joints of fingers, hand,
ankle, knee, elbow and
spine

10.10 %

Psoriasis
inversa

L40.8 Shiny and red lesions,
typically free of scales

Intertriginous sites as
armpit, inguinal region,
navel

n. r.

Diagnosis and classification of Psoriasis is usually performed by visual examination and sense

of touch with special focus on the most relevant body regions. At the presence of more atypical

presentations, skin biopsies may be helpful for detection and classification of the Psoriasis form

[170]. On the one hand, the main task during diagnosis is to rule out other skin diseases such as

dermatitis, mycosis fungoides, tinea corporis, and pityriasis rosea [192, 170]. On the other hand,

by combining the subjective reports of patient and dermatologist, the severity of the disease and

the effect of previous treatments on the course of the disease is is taken into account. [319].

Patients suffering from Psoriasis often feel stigmatized and impaired in their everyday life due

to the visual symptoms. This impacts quality of life and can be a severe psychological burden for

patients [192]. Even thought the disorder is rarely life-threatening, it is considered as life-ruining

and the psychosocial difficulties can result in depression and anxiety [192, 138, 170].

Furthermore, Psoriasis can be associated with chronic-inflammatory comorbidities as rheum-

atoid arthritis, chronic-inflammatory bowel disorders and metabolic disorders, adipositas and

hypertension [138, 13] and has also been linked to increased risk of cardiovascular disease and

diabetes [170].
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Figure 4.1: Psoriasis vulgaris (top) [219], Psoriasis postulosa palmoplantaris (bottom left)[110]
and Psoriasis guttata (bottom left) [109].

4.1.4 Measurement of Severity

For evaluating clinical signs and treatment outcome it is essential to assess the severity of the

disease. Various classification instruments, i.e. clinical scores, are available to facilitate objective

measurement. To assess severity of Psoriasis symptoms, the more general Psoriasis Area and

Severity Index (PASI), but also Psoriasis form specific scores exist. Also to assess live quality

and overall health perceptions, a variety of clinical scores are available with differing focus, such

as the Dermatology Life Quality Index (DLQI). In the following, PASI and DLQI are briefly

introduces as both are the most commonly applied measures in the context of Psoriasis and as

both are part of the available data records.
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4.1.4.1 Psoriasis Area and Severity Index (PASI)

The most frequently applied measure is the PASI. It combines the severity of lesions and the area

affected into a single score and is intended to standardize the subjective, visual assessment of

disease severity. Therefore, the attending physician rates the extend to which the four individual

body regions head, torso, upper limb and lower limb are affected (from 0 % to 100 %). These

observations are transfered into an area score ranging from 0 to 6 and combined with the

severity of the clinical signs erythema (reddening), scaling and induration, each rated from 0 to

4. Overall, the PASI ranges from 0 (no disease) to 72 (maximal disease severity) [113, 319].

Based on this score, Psoriasis is often subdivided into the three severity categories mild, moderate

and severe form. Table 4.2 summarizes the classification rules along with a severity distribution

of Psoriasis patients in Germany according to [12]. Assessment of severity using the PASI is

especially possible for moderate and severe Psoriasis vulgaris cases. At the presence of mild

forms with a small proportion of affected body area (<5 % - 10 %), a reliable overall assessment

cannot always be provided using the PASI. In addition to the PASI, various specialized scores

exist which evaluate the specific symptoms of specific Psoriasis forms.

Table 4.2: Severity distribution of Psoriasis patients in Germany according to [12]

Severity PASI Frequency

mild PASI ≤ 10 60 %

moderate 10 < PASI ≤ 20 28 %

severe PASI > 20 12 %

The reduction of the PASI is considered as the primary outcome indicator concerning treat-

ment effectiveness. Hence, a dynamical parameter measuring the proportion of study subjects

reaching a defined relative PASI improvement at a specific point in time is the primary endpoint

in most controlled clinical trials. According to [233] and the current S3-Guidelines [240], the

goal of Psoriasis treatment is reaching a PASI reduction of ≥ 75 % after the treatment induc-

tion phase, which is maintained after that phase. The treatment induction phase lasts 10 to 24

weeks, depending on the drug, whereas the maintenance phase is defined as the period after the

induction phase. Additionally, a lower border is defined which needs to be achieved as shown

in 4.2. A systemic therapy is considered as successful and to be continued if PASI reduction is

≥ 75 % and modified if improvement is < 50 %. Modification of a treatment regimen involves

dose adjustment, addition of another therapy, i.e. a combination of treatments, or transition to

another drug [233].

For those cases where the PASI improvement is ≥ 50 % but < 75 %, the DLQI described in the

following section should also be considered.

4.1.4.2 Dermatology Life Quality Index (DLQI)

Due to the considerable impact on life quality, improvement of quality of life is another crucial

goal when treating Psoriasis and other chronic skin diseases. One of the most widely used
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Figure 4.2: Definition of treatment goals, i.e. successful and non-successful therapies of moderate
to severe Psoriasis according to [240].

instruments for measuring quality of life in patients with Psoriasis is the DLQI. The DLQI

integrates ten questions regarding impairment induced by the respective disease. Overall, the

DLQI score ranges from 0 (no impairment) to 30 (maximum impairment) [103]. In case of

Psoriasis a DLQI ≤ 10 % is regarded as mild form, whereas a DLQI > 10 is associated with

severe impairment [233].

Considering treatment effectiveness, improvement of health related quality of life and patient

reported outcomes are gaining importance especially for chronic diseases. Therefore, the eval-

uation of quality of life has become a secondary endpoint parameter when treating Psoriasis.

According to [240] the aspired goal is a DLQI of 0 or 1, indicating no life quality impairment

caused by the disease. As shown in figure 4.2, therapy options resulting in DLQI scores higher

than 5 are not to be considered as successful. Hence, in those cases where a therapeutic response

results in PASI improvements ≥ 50 % but < 75 % and the DLQI is > 5, the therapy should be

modified but can be continued otherwise.

4.1.5 Treatment Objectives and Options

Psoriasis is incurable and no complete remission is possible with currently available therapy

options. Therefore, the therapeutic objective is to control and reduce clinical signs and symptoms

and to minimize ADEs to consequently reduce the disease’s impact on the patients life.

The main criterion determining the decision concerning treatment options is the disease severity

and possible absolute contraindications [240]. However, also additional factors as the patient’s

age, occupation and family planning need to be considered when making treatment decisions.

Finally, a compromise between the possibly severe ADEs and expected benefits need to be found.

Independent of the disease severity, the current S3 guideline on the treatment of Psoriasis

vulgaris [240, 233] recommends a basic therapy consisting of ointments with and without active

pharmaceutical ingredients for hydration and care of affected skin areas.

For mild Psoriasis vulgaris cases (PASI < 10), the symptoms typically can be controlled with

topical therapies only. Here, the guideline recommends, among others, application of Vitamine-D

analogs reducing skin cell growth or glucocorticosteroids, reducing inflammation. [240, 233]

In case of moderate to severe Psoriasis forms, the S3 guideline recommends the application of a
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systemic therapy. Here, a number of immunosuppressive or immunomodulating therapy options

exist, administered orally or via subcutaneous (s.c.) or intravenous (i.v.) injection. The four

conventional pharmaceutical drugs Cyclosporine (CSA), Methotrexate (MTX), Fumaric ester

acid and the retinoid Acitretin are recommended as first line treatments. However, especially

during long term treatment those therapies are often related to severe ADEs, ranging from

nausea, emesis to organ dysfunction or damage. Furthermore, numerous contraindications are

described [240] associated with such treatments.

Table 4.3: Systemic therapy options targeting the treatment of Psoriasis and categorized into
conventional pharmaceutical drugs and biopharmaceuticals along with type of route
of administration (oral, s.c. - subcutaneous, i.v. - intravenous), classification into
first- or second-line treatment and absolute contraindications based on [240].

Drug Adm. Classific. Absolute Contraindication

Conventionals

Acitretin oral first-line - severe renal or hepatic dysfunction
- women: pregnancy, breastfeeding, planned child

Apremilast oral second-line - women: pregnancy, breastfeeding

Cyclosporine oral first-line - renal dysfunction
- uncontrolled arterial hypertension
- active tuberculosis or other severe infections
- malignancies present or in medical history

Fumaric acid
esters

oral first-line - severe renal or hepatic dysfunction
- severe gastrointestinal diseases

Methotrexate oral first-line - women: pregnancy, breastfeeding, planned child
- severe hepatic diseases
- renal insufficiency
- active tuberculosis or other severe infections

Biopharmaceuticals

Adalimumab s.c. first-line - heart failure
- active tuberculosis or other severe infections

Etanercept s.c. second-line - heart failure
- active tuberculosis or other severe infections

Infliximab i.v. second-line - heart failure
- active tuberculosis or other severe infections

Secukinumab s.c. first-line - women: pregnancy, breastfeeding
- active tuberculosis or other severe infections

Ustekinumab s.c. second-line - active tuberculosis or other severe infections

Additionally to conventional pharmaceutical drugs, various biopharmaceuticals have been ap-

proved within the recent years which have proven to be more effective while causing less severe

ADEs than conventional therapies [306]. First-line biopharmaceuticals are Adalimumab and

Secukinumab. Further second-line biopharmaceuticals are Apremilast, Etanercept, Infliximab

and Ustekinumab. Another second-line biopharmaceutical drug, solely approved for the treat-

ment of Psoriasis arthritis, is Golimumab. The biopharmaceuticals drugs can be further grouped
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according to their mechanism of action, namely into the TNF-α (Tumor Necrosis Factor) antag-

onists (Infliximab, Etanercept, Golimumab, Adalimumab and Certolizumab), the interleukin-12

and interleukin-23 (IL-12/13) antibody Ustekinumab, and the interleukin-17 (IL-17) antibody

Secukinumab. However, due to their considerable higher costs, the guideline recommends the

application of biopharmaceuticals in cases only where conventional treatment options show in-

sufficient drug response, are contraindicated or ADEs exceed the benefits of the treatment. Since

the beginning of the work on this thesis, a number of additional biopharmaceutical drugs have

been approved, namely Ixekizumab, Brodalumab, Efalizumab, Tildrakizumab, Guselkumab and

Risankizumab. However, as they are neither contained in the available data, nor described in

the current Psoriasis treatment guideline [240], they are not included in this study.

Table 4.3 lists the pharmaceutical systemic therapy options mentioned in the current S3 guideline

and considered in this work. All drugs are listed along with application type, their classification

into first- or second-line treatment and absolute contraindications [240].

Besides conventional pharmaceutical drugs and biopharmaceuticals, phototherapies, as narrow

band ultraviolet B light or combinations of psoralen with exposure to Psoralen and Ultraviolet

A Light (PUVA), are considered as systemic treatment and are recommended for moderate to

severe Psoriasis cases.

Especially due to the burdensome ADEs and unsatisfactorily effective therapies, patients are

often unsatisfied with their treatment. This only moderate patient satisfaction results in low

adherence to treatments. Studies have shown that only 25 % of patients are entirely satisfied

with their treatment [329] and only 40 % of patients adhere to their prescribed medications [289].

4.2 Data Acquisition

As stated initially, the available dataset for development and evaluation of a therapy recom-

mender system was extracted and prepared in collaboration with the Clinic and Polyclinic for

Dermatology, University Hospital Dresden and reflects routine care of Psoriasis treatment. In

total, information on N = 1424 consultations from P = 239 patients was manually extracted

from health records by hospital employees. For the most part, the information stored in the

health record is unstructured and consist of written text and notes. In order to derive struc-

tured consultation representations, attributes, which are assumed to determine the therapy

decisions, were defined together with corresponding categories and value ranges in collaboration

with medical experts. Using Microsoft® Access®, input forms were provided for the clinic to

facilitate standardized data entry and to structure the data in a relational database. Within

an initial revision process, corrupted and invalid data was corrected where obviously possible

and missing values, which are assumed to be constant over consultations for a specific patient,

were padded until the next valid value (Last Observation Carried Forward (LOCF)). Finally,

the Microsoft® Access® database is converted to MariaDB® and stored on a local server. An

Entity Relationship Diagram (ERD) of the database structure is shown in figure B.9. The entire

processing pipeline, including data acquisition and the mentioned initial preprocessing step, is

presented schematically in figure 4.3.
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Figure 4.3: Data acquisition and preprocessing pipeline. To facilitate structured data extraction
from unstructured health records by hospital employees, Microsoft® Access® input
forms are provided. The data is preprocessed, transformed to structured consultation
representations, and stored on a MariaDB® server.

4.3 Data Description

4.3.1 Consultation Sequence

The number Np of medical consultations for each patient p ∈ P varies. However, all con-

sultations for an individual patient are from consecutive time steps with no in-between missing

instances, resulting in a gapless sequence of consultations for each patient as schematically pic-

tured in figure 4.4. For each consultation n and patient p, patient describing attributes xp
n

(section 4.3.2), i.e. patient data, and treatment describing attributes yp
n (section 4.3.3), i.e.

therapy decisions and therapy outcome, are distinguished. Additionally, treatment history at-

tributes ap
n (section 4.3.4), i.e. therapy history, of a patient p and regarding a consultation n

is recorded, which collects the outcome of all therapies ever applied in a patients’ consultation

sequence preceding consultation n.

4.3.2 Patient Describing Attributes

Patient describing attributes, i.e. patient data, includes demographic attributes and diagnosed

comorbidities as well as attributes concerning diagnosed Psoriasis types and health status. Over-

all, the dataset contains 23 patient describing attributes for each consultation which are sum-

marized in table 4.4. Here, all attributes are listed along with level of measurement, range

of values and availability relative to all consultations. The availability of attributes specifying

comorbidities is given relative to the number of documented comorbidities for a consultation.

The scale of measurement is highly inhomogeneous and varies among the various attributes.

Besides interval scaled numeric (quantitative) attributes the available categorical (qualitative)

attributes range from dichotomous and multi-categorical to attributes with ordinal properties.

Despite of initial data padding, patient data is partially just intermittently available. Depending

on the attribute, this leads to large proportions of missing values and low availability as can be

seen in table 4.4.

For both, Psoriasis form and comorbidities, several conditions can co-occur simultaneously.

That is why for each of the 6 Psoriasis forms listed in table 4.1 and attributes associated with the

34 comorbidities listed in table B.2 one individual attribute is defined. Each patient describing

attribute vector xp
n therefore sums up to D = 126 attributes.
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Figure 4.4: Consultation sequence of a patient p. The data captured for each consultation n
out of Np consultations comprises patient describing attributes xp

n, i.e. patient data,
treatment describing attributes yp

n, i.e. therapy decision from consultation n and
therapy outcome derived from the subsequent consultation n + 1, and treatment
history attributes ap

n, i.e. therapy history.

Furthermore, in order to facilitate mathematical operations on the data at hand, categorical, i.e.

dichotomous, nominal, and ordinal attributes must be transformed to numeric values. Dicho-

tomous attributes (e.g. gender) are simply encoded into binary attributes. In case of nominal

attributes (e.g. child planned), one distinct numeric value is assigned to each of the available

categories of a specific attribute (one-hot encoding). Ordinal attributes (e.g. comorbidity status)

are mapped to discrete numeric values with respect to the ordering of the categories.

Figure 4.5 schematically details the matrix Xp which holds patient describing attributes for

all Np consultations of an exemplary patient p.

4.3.3 Treatment Describing Attributes

Treatment describing attributes comprise (i) topical and systemic therapies prescribed or recom-

mended by the attending physician, i.e. therapy decisions, and (ii) associated therapy outcome.

Therapy outcome, and therewith also the information whether the physician’s therapy decision

was actually applied, is derived from the subsequent consultation as illustrated in figure 4.4

and described in section 4.4.1. Consequently, the final consultation in a patient’s consultation

sequence is lacking those application and outcome attributes. Furthermore, the information

whether the prescribed or recommended treatment was changed between two consecutive con-

sultations can be derived from a patient’s consultation sequence. This information is missing

for each first consultation in a consultation sequence as the preceding treatment is unknown.

As defined in chapter 1, the focus of this work is on recommending a systemic therapy for
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Figure 4.5: Patient describing attributes Xp, i.e. patient data, for all Np consultations n of an
exemplary patient p.

Figure 4.6: Treatment describing attributes Yp, i.e. therapy decisions and therapy outcome, for
all Np consultations n of an exemplary patient p.

Figure 4.7: Treatment history describing attributes Ap, i.e. therapy history, for all Np consulta-
tions n of an exemplary patient p.
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-
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a given patient and medical consultation. Hence, those consultations associated with topical

therapies only are neglected in the following. In case of consultations, for which a combination

of systemic treatment along with a supplementary topical treatment are recommended, the ob-

served outcome is assumed to be attributed to the systemic treatment only.

In total, there are 13 distinct systemic therapy options applied in the dataset as listed table B.1.

M conv = 5 conventional pharmaceutical drugs, M bio = 6 biopharmaceutical drugs and includ-

ing Golumimumab, the generalized group of phototherapies MUV = 1, and other not specified

systemic treatments Mothers = 1. Additionally, combinations of conventional treatments as

Methothrexate and Acitretin with biopharmaceutical drugs or phototherapies are common ther-

apy options. Therefore, those combinations are considered as M combi = 9 additional individual

therapies resulting in overall M = 22 systemic therapy options. However, as later detailed in

figure 4.14, those M = 22 systemic therapy options are partly just represented by very few

occurrences in the data at hand.

Four indicators to quantify therapy outcome can be derived from the collected data. Firstly,

effectiveness, which represents the patient’s perception in the ordinal values poor, moderate and

good (1). Secondly, two more objective indicators are extracted from the change of the PASI

(∆PASI) between two consecutive consultations and which are associated with the applied

treatment. The discrete ∆PASI ∈ [−72, 72] as it is, which does not take the underlaying

absolute PASI into account (2a) and the improvement or deterioration of the PASI relative

to the absolute value, i.e. ∆PASIrel ∈ [−1, 1] (2b). The latter indicator is inspired by the

definition of a relative PASI reduction as primary endpoint in clinical studies and yields a

continuous ratio scaled value ranging from ∆PASIrel < 0 (deterioration) over ∆PASIrel = 0

(no change) to ∆PASIrel > 0 (improvement). To avoid too much impact from small PASI

fluctuations at low absolute values, PASI changes which maintain the absolute value within a

range PASI < 5 are considered as good outcome, i.e. the disease is successfully controlled and

∆PASIrel = 1. Finally, the occurrence of ADEs are reported as additional negative therapy

response (3). Analogously to the patient attributes, also outcome indicators are not always

completely given but have missing values as can be seen in table 4.5. Only therapy prescriptions

or recommendations for which at least ∆PASIrel or the subjective effectiveness are given or

ADE have been reported are denoted as having known outcome in the following.

Additionally, a summarizing outcome parameter is defined merging three of the aforemen-

tioned indicators into one score. This affinity score an,m is intended to express the overall effect

of a treatment m in a consultation n. Affinity is modeled as weighted sum of effectiveness

(f1,n,m) and ∆PASIrel (f2,n,m), and is additionally penalized for occurring ADEs (f3,n,m). The

weights wi ∈ [0, 1] for each component i ∈ [1, 2, 3] allow to vary the impact of the three described

components and δi controls the components inclusion. If neither of the two parameters f1,n,m

or f2,n,m is given, the affinity score is undefined. If only ADEs have been reported, the mean of

the affinity score value range (0.5) is penalized. Otherwise, the affinity score is computed from

the available indicators according to

an,m =
δ1 · w1 · f1,n,m + δ2 · w2 · f2,n,m

δ1 · w1 + δ2 · w2
− δ3 · w3 · f3,n,m
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with δi being 1 for the available and included components. All weights wi are set to 1 in this

work. For affinity score computation, all three components are mapped to numeric values in the

domain 0 ≤ fi,n,m ≤ 1 according to the definitions 4.1, 4.2, and 4.3. In case of f2,n,m, a sigmoid

function is applied to ∆PASIrel with the intention to facilitate a linear relation in case of small

relative PASI variations with disproportionate impact of increasing values.

f1,n,m =



















0.1 poor effectiveness

0.5 moderate effectiveness

0.9 good effectiveness

(4.1)

f2,n,m =
1

1 + e−5·∆P ASIrel
(4.2)

f3,n,m =







0.25 if ADE was reported

0 if no ADE was reported
(4.3)

All treatment describing attributes, namely therapy decision, the indicators specifying therapy

outcome, and the information whether treatments were changed, are listed in table 4.5 along

with level of measurement, range of values and the availability of outcome indicators relative

to the number of applied systemic therapies. Similar to the patient describing attributes, the

scale of measurement ranges from interval and ratio scaled quantitative attributes to qualitative

attributes with dichotomous and multi-categorical nominal and ordinal properties. Analogously

to Psoriasis forms and comorbidities in the patient data, one individual attribute is defined for

each therapy option and outcome indicator. Therefore, each outcome indicator is represented by

a M dimensional vector which holds for each therapy m ∈ M the observed attribute value and

is undefined otherwise. Hence, the resulting sparse therapy attribute vector yp
n representing one

consultation n of patient p comprises 7 attributes for each therapy option, i.e. 7 · M attributes.

Figure 4.6 schematically details the matrix Yp which holds treatment describing attributes

for all Np consultations of an exemplary patient p.

Table 4.5: Treatment describing attributes comprising therapy decisions and associated therapy
outcome stored in the N × 7 · M Outcome Matrix Y (Y′, Y′′, see section 4.4.2). The
outcome indicators’ availability is given relative to the number of applied systemic
therapies.

Attribute Scale Range Y Y′ Y′′

Systemic therapy nominal see table 4.5 - - -

Effectiveness ordinal good, medium, bad 98.72 100 100

∆PASI interval -27 ... 18 57.99 100 100

∆PASIrel ratio -1 ... 1 57.99 100 100

ADE dichotomous yes, no 100 100 100

Affinity score ratio 0 ... 1 99.53 100 100

Therapy changed dichotomous yes, no 81.56 81.56 100
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4.3.4 Treatment History Attributes

Additional to yp
n, the treatment history attributes, i.e. the Psoriasis therapy history of a patient

p and regarding a consultation n is recorded. Therefore, the outcome of all therapies ever ap-

plied in a patient p’s consultation sequence preceding consultation n are collected in ap
n. Besides

those therapies which can be derived from a patient’s consultation sequence, the data addition-

ally provides for each patient all known therapies applied previously to the first consultation in

the sequence. Outcome of a therapy option is always updated with the most recently observed

outcome for this respective treatment. Analogously to the treatment describing attributes de-

scribed in 4.3.3, the vector ap
n comprises 6 attributes for each therapy option m ∈ M , i.e. 6 · M

attributes. In table 4.6, all attributes are listed along with level of measurement, range of values

and the availability of attributes relative to the number of previously applied therapies. Fig-

ure 4.7 schematically details the matrix Ap which holds treatment history describing attributes

for all Np consultations n of an exemplary patient p.

Table 4.6: Previous treatment describing attributes comprising therapy decisions and associated
therapy outcome which were ever applied previously to the target consultation n
stored in the N × 6 · M Previous Outcome Matrix A (A′, A′′, see section 4.4.2). The
outcome indicators’ availability is given relative to the number of previously applied
systemic therapy options.

Attribute Scale Range A A′ A′′

Systemic therapy nominal see table B.1 - - -

Effectiveness ordinal good, medium, bad 49.14 49.56 100

∆PASI interval -27 ... 18 12.19 23.71 100

∆PASIrel ratio -1 ... 1 12.16 23.68 100

ADE dichotomous yes, no 100 100 100

Affinity score ratio 0 ... 1 63.80 64.04 100

4.3.5 Data Representation

Independent of individual patients and chronological ordering of the Np consultations of each

patient p ∈ P , Xp, Yp and Ap can be concatenated to yield the three matrices X, Y and A

which hold the entire set of all N instances as pictured in figure 4.8. The N × D Data Matrix

X comprises the D dimensional patient data summarized in table 4.4 for each instance n. In

the N × 7 · M Outcome Matrix Y the applied systemic treatment, the five outcome indicators

and the information whether the treatment was changed, as summarized in table 4.5, are given.

Finally, the N × 6 · M Previous Outcome Matrix A stores for each of the M systemic treatment

options the information whether it was previously applied and which outcome was observed

according to table 4.6.
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Figure 4.8: Concatenation of the P individual patient matrices Xp yielding the Data Matrix X

(X′, X′′, see section 4.4.2) which holds the entire set of all N instances. Concat-
enation of Y (Y′, Y′′, see section 4.4.2) and A (A′, A′′, see section 4.4.2) is done
equivalently.

4.4 Data Preprocessing

As prescribed above and pictured in figure 4.3, initial data preprocessing was already conducted

immediately after data collection before transferring the data to the MariaDB® database. This

initial step mainly involved data cleaning, namely erasing empty instances as well as detection

and correction of non-plausible or invalid entries, data padding where assumed to be valid, and

data transformation into numerical values. In the following, further preprocessing steps are

outlined, namely extracting outcome information as described in section 4.4.1 and imputing

missing values as described in section 4.4.2.

4.4.1 Outcome Extraction

Firstly, in accordance with figure 4.4 and to yield the data as described in 4.3, for each con-

sultation n the information whether the physician’s therapy decisions were actually applied is

extracted from the sequential data. Furthermore, the recorded outcome indicators are associated

with the treatment applied in consultation n and the affinity scores are calculated according to

section 4.3.3. A table storing this outcome information is added to the MariaDB® database and

linked to the respective consultations.

Secondly, for each individual patient, the accumulation of outcomes of all treatments ever ap-

plied previously to the first recorded consultation of this patient is extended by therapies applied

in the recorded consultation sequence. That means, outcome indicators observed in the con-

sultation sequence preceding consultation n are added as described in section 4.3.4. Analogously

to the consultation treatment outcome, each consultation’s therapy history is stored in a table

which is added to the database and linked to the respective consultations.
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4.4.2 Missing Value Imputation

As stated in section 4.3.2, especially patient describing attributes contain numerous missing val-

ues. As further data processing can be limited by data sparsity, strategies need to be developed

to cope with this incompleteness of attributes. In this work, the following assumptions are made

regarding the patient describing attributes stored in the Data Matrix X which contain missing

values.

• The dichotomous attribute Living in partnership and the nominal attributes Skin changes

are considered as NMAR. Missing values are assumed to be equivalent with the negation

of the respective attributes.

• The remaining attributes with missing values are considered as MCAR or MAR and are

filled according to further assumptions detailed in the following.

Overall, a two stage imputation strategy is realized yielding a dataset with a reduced number of

missing values X′ and a complete dataset X′′. Imputation methods as introduced in section 3.4.2

are employed. Stage one (X′) relies on domain knowledge and more reliable assumptions:

1. Impute NMAR attributes according assumption stated above (Single value imputation)

2. Discard attributes dropping below a minimum number of entries (< 10 % availability)

3. Perform a sequential filling approach where appropriate (LOCF)

4. Impute attributes according to domain knowledge (Single value imputation)

Stage two applies more uncertain assumptions:

1. Apply statistical imputations (Single value imputation)

2. Apply statistical imputations conditional to other attributes (Single value imputation)

3. Replace the remaining missing values by a new category (Missing indicator)

The realized rules are described in table 4.7 and the resulting attributes’ availability relative to

all consultations are summarized in table 4.4, respectively.

Also outcome indicators for therapies, which are known to have been applied, are not always

completely given but have missing values. As can be seen in table 4.5, especially ∆PASI

and ∆PASIrel contain many data gaps as a consequence of missing data in the PASI. The

dichotomous ADE indicator was recorded using a checkbox and has no missing values. Padding

of missing therapy attributes aims at yielding denser versions Y′ and Y′′ of the Outcome Matrix.

The number of missing ∆PASI and ∆PASIrel values is directly affected by the described

PASI imputation procedure and the missing values are already entirely eliminated in the first

imputation stage. In consultation sequences in which not a single PASI value is present, which

is not the case in the given data, missing ∆PASI = 0 is imputed in the second stage. This

directly effects ∆PASIrel and corresponds to no PASI change.

For imputing missing effectiveness indicators, a LOCF strategy, analogously to PASI imputation,

is utilized in stage one. In cases were the effectiveness indicator cannot already be completely
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Table 4.7: Two stage imputation strategy to cope with missing values in X, yielding the data
matrices X′ and X′′, respectively. The resulting attribute availability is summarized
in table 4.4.

Attribute Imputation Strategy

Stage 1:

Living in partnership Only the affirmative value is assumed to be actively entered, not
living in partnership is imputed for missing values.

Education and
profession

Dropped due to availability < 10 %.

Planned child Women age age > 50: impute postmenopausal
Men age > 50: Impute no child planned

PASI Missing values are assumed to stem from omitted inputs due to
unchanged values.
1. Fill forward: missing values in subsequent consultations are
imputed with the last valid value.
2. fill backwards: missing values in the preceding consultations are
imputed with the next valid value.

Skin changes Missing values are assumed to correspond to never occurred.

Severity rated by
patient

Dropped due to low availability and high correlation with PASI
(r = 0.65).

Patient satisfaction
with treatment

Dropped due to availability < 10 %.

Stage 2:

Weight and size For women and men impute median of group.

Planned child An additional category unknown is imputed.

Year of first diagnosis Imputed value is derived from the median age of the first diagnosis.

Psoriasis type Fill with most common diagnosis, i.e. psoriasis vulgaris.

Family anamnesis An additional category unknown is imputed.

padded in Y′, the remaining missing values are replaced with the mean of the value range,

i.e. moderate effectiveness, in the second imputation stage. The summarizing affinity parameter

directly depends on ∆PASIrel and effectiveness and does not require individual processing. The

resulting availability of all indicators is summarized in table 4.5.

The realized rules are described in table 4.8 and the resulting availability of all indicators is

summarized in table 4.5, respectively.

Finally, also in case of the accumulation of treatments applied previously to a patient and

consultation, outcome indicators are frequently missing. Partly this data overlaps with the

Outcome Matrix Y. However, there are ~5000 additional applied treatments captured in the

Previous Outcome Matrix A which were applied previously to the first consultation recorded for

a patient p and for which no sequential information is available. Hence, the first stage imputation

strategy proposed for the Y reduces missing values in A′ just to a limited extend. To obtain a

complete version A′′ of the Previous Outcome Matrix, a more generous second imputation level

is applied analogously to Y′′. The resulting availability relative to the number of previously
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applied treatments is summarized in table 4.6.

Table 4.8: Two stage imputation strategy to cope with missing values in Y and A, yielding
the data matrices Y′ and Y′′ and A′ and A′′, respectively. The resulting outcome
indicator availabilities are summarized in table 4.5 and table 4.6.

Indicator Imputation Strategy

Stage 1:

Effectiveness Missing values are assumed to stem from omitted inputs due to
unchanged values.
1. Fill forward: missing values in subsequent consultations are
imputed with the last valid value if the same treatment was applied.
2. fill backwards: missing values in the preceding consultations
with same applied treatment are imputed with the next valid value.

∆PASI Impute 0, which corresponds to no PASI change evoked by the
applied treatment.

∆PASIrel Directly affected by ∆PASI.

Stage 2:

Effectiveness Impute middle effectiveness value, i.e. moderate effectiveness.

∆PASI, Impute 0, which corresponds to no PASI change.

∆PASIrel Directly affected by ∆PASI. The remaining are imputed with 0.

4.5 Data Summary

In this section descriptive statistics, performed on all N = 1242 consultations and P = 239

patients, aim at giving insight into the data distributions of patient describing attributes, i.e.

patient data, treatment describing attributes, i.e. therapy decisions and associated therapy out-

come, and attributes describing previously applied therapies, i.e. therapy history. For attributes

affected by data imputation, the effect of the applied data padding on the statistics is discussed.

The number of consultations per patients varies strongly as can be seen in figure 4.9, ranging

from 13 (5.43 %) patients with just a single consultation to a single patient with 16 consultations.

75 (31.38 %) patients are represented by 5 consultations in the provided data, which is the most

frequent number of consultations for an individual patient.

4.5.1 Patient Describing Attributes

As depicted in figure 4.10 (a), the overall data comprises 135 (56.49 %) male and 104 (43.51 %)

female patients with an age distribution as shown in figure 4.10 (b) with mean 56.27 years and

a standard deviation of 15.10 years. The distribution of those demographic characteristics is in

accordance with the prevalence reported in [302] and summarized in 4.1.

As can be seen in figure 4.11a, the clearly most common comorbidity present in the recorded

data is arterial hypertension, which affects patients in 52.58 % of the recorded consultations.

Furthermore, metabolic diseases, especially hyperlipidemia with 26.73 % and diabetes mellitus
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Figure 4.9: Relative number (%) of consultations per patient.

type 2 with 15.94 % of consultations, are an apparently widespread group of comorbidities oc-

curring in patients suffering from Psoriasis. Also hepatic diseases, namely hepatopathy (14.81 %)

belong to the most prevalent comorbidities in the dataset. Bowel or gastrointestinal diseases, on

the other hand, even though stated to be associated with Psoriasis (4.1), are only rarely present

in the data.

Furthermore, in 11.67 % of consultations psychological disease diagnoses are recorded with 6.52 %

cases of depression. Additionally, figure 4.11a shows that also addictive diseases stand out. In

20.69 % of the consultations patient have stated to be smoker (21.65 %), ex-smoker (4.51 %)

or are assumed to abuse alcohol (6.76 %). However, especially in cases of alcohol abusus and

unspecified psychological diseases, diagnoses are often unclear as also show in figure 4.11a.

Figure 4.12 (a) shows the overall occurrence of Psoriasis vulgaris and its side-specific and

acute forms Psoriasis inversa and Psoriasis guttata, Psoriasis pustulosa and Psoriasis arthritis

relative to all 239 patients in the database. Besides Psoriasis postulosa palmoplantaris, no other

Psoriasis postulosa cases are contained in the data. The shown distribution demonstrates the

occurrence of diagnosed types relative to all patients in the dataset.

Only for 136 (56.90 %) from all 239 patients just a single Psoriasis type is diagnosed whereas

101 (42.26 %) patients suffer from more than one type (two types: 93 (38.91 %), three types: 8

(3.35 %). Additionally, there are also two patients for which the Psoriasis type is unknown.

The Psoriasis type distribution illustrates Psoriasis vulgaris clearly being the most prevalent

type occurring in 209 (87.4 %) of all 239 patients followed by Psoriasis arthritis with 80 cases

(33.47 %). However, whereas from the 209 Psoriasis vulgaris cases 113, which is 47.28 % of

the entire dataset, are single Psoriasis vulgaris diagnoses, Psoriasis arthritis mainly occurs in

combination with other Psoriasis types. Only three (1.26 %) cases with Psoriasis arthritis only

are present in the data. Additionally, 90 patients, i.e. 37.66 % of all cases in the database, suffer
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Figure 4.10: Relative gender (a) and age (b) distribution (%) over all patients.
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from additional disease related nail changes.

Figure 4.12 (b) shows the combinations of diagnoses. Most cases for which more than one

Psoriasis type is diagnosed are combinations of Psoriasis vulgaris with other types. As can

be seen, especially Psoriasis arthritis and Psoriasis guttata often occurs in combination with

Psoriasis vulgaris in the datasets. In contrast, Psoriasis postulosa palmoplantaris is in most

cases diagnoses without combinations with other types. Note that in figure 4.12 (b) single

diagnoses and all combinations with a supplementary diagnosis are added cumulatively for each

Psoriasis type. As a result, each of the 8 cases with combinations of three diagnosed Psoriasis

types appears twice on the associated bars.

As described in section 4.4, the imputation strategy for missing Psoriasis type values is to fill

data gaps with the most prevalent diagnosis, namely Psoriasis vulgaris. This approach has

only minor impact on the overall diagnosis statistics. The number of patients in the dataset

with a single Psoriasis type only are increased to 138 (57.74 %). And, consequently, also the

overall number of Psoriasis vulgaris cases and the single Psoriasis vulgaris diagnoses are slightly

increased to 211 (88.28 %) and 115 (48.12 %), respectively.

Figure 4.13a demonstrates the distribution of PASI over all consultations without and with

missing data imputation. As can be seen, most consultations are associated with small PASI

resulting in a long-tailed distribution with mode 2, mean PASI of 6.14 and standard deviation

6.47. Classified into severity categories according to [12], the distribution is comparable to the

Psoriasis severity distribution indicated in [12] and listed in table 4.2 with a slight surplus of

mild cases (80.87 %) compared to moderate (15.10 %) and severe cases (4.03 %). 28.02 % of PASI

values are missing and are padded according to the imputation scheme described in section 4.4.

The applied PASI imputation strategy has only minor impact on the PASI distribution. Espe-

cially the severity categories remain basically unchanged as also shown in figure 4.13a. Only the

mode of the distribution is slightly shifted towards a PASI of 4.

4.5.2 Treatment Describing Attributes

In contrast to patient data, the sequence of therapy decisions, i.e. prescriptions or recommend-

ations, and therapy outcome is often interrupted by missing entries. From all 1242 instances in

the dataset 1108 consultations (89.21 %) are provided along with a systemic treatment recom-

mendation or prescription, 857 consultations (69.00 %) are associated with an applied systemic

treatment and 853 consultations (68.68 %) are associated with a known treatment outcome.

Concerning missing therapy decisions, two sets are distinguished. Those consultations which

are only associated with a recommended or prescribed topical treatment (94) and those cases

in which no treatment at all is prescribed or recommended (40), which account for 7.57 % and

3.22 % of all 1242 consultations, respectively.

Concerning consultations which are not associated with any systemic treatment application,

four sets are distinguished. As a consequence of missing therapy decision described above, 94

consultations are only associated with an applied topical treatment (i) and 40 consultations are

associated with no applied treatment at all (ii), accounting for 7.57 % and 3.22 % cases, respect-

ively. Furthermore, lacking patient adherence, i.e. therapies prescribed or recommended by the
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Figure 4.12: (a) Relative occurrence (%) of diagnosed Psoriasis types. (b) Relative occurrence of
single diagnoses and combinations with supplementary Psoriasis types, i.e. Psoriasis
vulgaris ( ), Psoriasis postulosa palmoplantaris ( ), Psoriasis guttata ( ),
Psoriasis arthritis ( ), and Psoriasis inversa ( ).
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(a) PASI distribution (%) over consultations and categorization into severity levels [12] without ( )
and with ( ) missing value imputation.
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attending physician but not applied by the patient account for 12 (0.97 %) additional instances

with missing applied systemic treatment in the consultation sequence (iii). Finally, the last

consultation of each of the 239 patients is associated with a systemic therapy prescription or

recommendation but outcome is unknown yet, resulting in 239 (19.24 %) additional instances

with missing outcome (iv).

Concerning consultations for which information on the outcome of systemic treatments is miss-

ing, five sets can be distinguished. For all 4 sets with missing systemic treatment applica-

tion described above, accounting for 385 (31.00 %) cases, obviously no outcome information is

available. However, in case of 4 additional consultations (0.32 %), recommended or prescribed

systemic treatments are labeled as applied but none of the outcome indicators ∆PASIrel or

subjective effectiveness are given, and no ADE is reported resulting in the 853 consultations

with known treatment outcome.

In figure 4.14 both therapy decision and application are shown as well as the 134 (10.79 %)

consultations with no or topical treatment only. Therapy decisions comprise those therapies

which were actually applied but also those 12 (0.97 %), which are not applied due to lacking

patient adherence and the 239 (19.24 %) new consultations for which information on application

or outcome is yet unknown. As can be seen, recommendation and prescription of the various

systemic therapy options are distributed unequally. Frequency of prescribed or recommended

therapies ranges from therapy combinations occurring very rarely, e.g. the Acitretin/Ustekimu-

mab combination occurs only once in the available data, to treatment with Ustekimumab only,

which is prescribed or recommended in 219, i.e. 25.55 % of the consultations. In general, the

group of biopharmaceutical drugs clearly are recommended or prescribed more frequently than

conventional pharmaceuticals or combinations of both. 538, i.e. 63.44 % of all recommended or

prescribed drugs are biopharmaceuticals, whereas only in 209 (24.65 %) and 101 (11.91 %) cases

conventional drugs or combinations of both were recommended or prescribed, respectively.

Figure B.4 (a) and figure B.1 show the patient’s subjective assessment of effectiveness for

applied treatments. Effectiveness is the most prevalent outcome indicator. Only for 11 con-

sultations this indicator is missing. According to the overall distribution pictured in figure B.4,

the majority of systemic therapies are considered to have good outcome and only declining

quantities are considered moderately or badly effective, respectively. Even though the ratio of

good, moderate and bad effectiveness values varies among the different therapies, as shown in

figure B.1, it is hardly possible to identify a generally applicable tendency towards better or

worse individual therapy options. However, the ratio of good therapies seems to be comparably

higher for the group of biopharmaceuticals or drug combinations in comparison with conven-

tional treatments.

Replacing missing effectiveness indicators by doing the forward and backward filling as proposed

in 4.4.2, only negligible effect on the overall effectiveness distributions are observed due to the

small number of affected instances.

Absolute and relative PASI change between two consecutive consultations, i.e. ∆PASI and

∆PASIrel, are the most absent outcome indicators due to irregularly recorded PASI. This in-

dicator is missing for 360, i.e. 42 % of all consultations with applied therapies. As shown in
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Figure 4.14: Therapy decision ( ), i.e. recommended and prescribed therapies, application
of therapy recommendations ( ), and consultations with no or topical treatment
only ( ).

figure B.4 (left bars), overall ∆PASIrel appears to follow a normal distribution which is slightly

right-skewed. Whereas mode and median of the ∆PASIrel distribution are ∆PASIrel = 0, the

mean and standard deviation are ∆PASIrel = 0.14 and ∆PASIrel = 0.47, respectively. Con-

sequently, there is a large portion of therapies which appear not to evoke an explicit improvement

but also potentially prevent deterioration of the health status and control the disease. However,

the overall number of cases in which the treatment appears to improve the PASI exceeds the

number of those cases in which no effect leads to an decreasing PASI. This is not effecting the

median of the distribution due to the large portion of cases with ∆PASIrel = 0 but causes a

higher average value. The straightforward interpretation is that, comparable to the effectiveness

indicator, the majority of the applied therapies can be associated with positive outcome. Con-

sidering small PASI fluctuations at low absolute values as controlled cases with good outcome, as

described above, significantly reinforces this characteristic as demonstrated in figure B.4 (right

bars). The distribution of ∆PASIrel values over all systemic therapy options after this modi-

fication is shown in figure B.2. Comparable to the subjective effectiveness indicator, there are

no outstanding therapy options concerning ∆PASIrel improvement or deterioration.

By applying the forward and backward filling approach described in 4.4.2, the number of cases

with ∆PASI = 0 is significantly increased. This, in turn, increases the number of applied

treatments which control the disease if small fluctuations are considered as controlled cases.

Computing Spearman’s rank correlation coefficient rs for therapy effectiveness and the ∆PASIrel
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score, a only a weak association between the two outcome measures of rs = 0.32 can be found.

If considering small PASI fluctuations at low absolute values as good outcome, the monotonic

relation between effectiveness and the ∆PASIrel is significantly increased to rs = 0.67, which

is interpretable as a strong association. However, computing rs for therapy effectiveness and

the ∆PASIrel score after missing PASI imputation (Y′), this monotonic relation is decreased to

rs = 0.46. This reduction indicates that the chosen single value imputation does not necessarily

represent the underlying data sufficiently but potentially introduces noise and the resulting data

should be used with caution.

As can be seen in both, figure B.5 (a), the vast majority of therapies in the database don’t

provoke ADEs. Only for 53, i.e. 6.18 % of the applied pharmaceuticals ADEs were noted in the

respective consultation’s record. Analyzing the ADE distribution over the different therapy op-

tions shown in figure B.3, especially for some biopharmaceuticals, such as Infliximab or the most

often recommended or prescribed treatment Ustekinumab, not a single case of ADE is repor-

ted. The conventional treatments, such as with fumaric acid ester, Apremilast, or Cyclosporine,

seems to provoke comparably many ADEs.

As prescribed in 4.3, the affinity score summarizes the three aforementioned indicators in

one single parameter and is intended to express the overall effect of a therapy. The overall

distribution of affinity scores pictured in figure B.5 shows that most of the therapies applied

in the captured consultations lead to high affinity scores, and thus have positive outcome.

As mentioned above, in case of 5 consultations none of the required outcome indicators are

given for the applied treatment and, according to the definition from 4.3.3, no affinity score

can be computed for those treatments. The distribution of affinity scores over all systemic

therapy options shown in figure 4.15 facilitates a more detailed insight into the overall effect of

treatment options. As can be observed for the effectiveness indicator, the ratio of consultations

with affinity ≥ 60, in the following considered as treatments with good outcome, is comparably

lower for conventional treatments than for biopharmaceuticals. Especially, Cyclosporine, but

also Ultra Violet (UV) therapy have only few occurrence with outcome in this affinity range.

Furthermore, the combinations of Methotrexate with biopharmaceuticals shows a comparably

large ratio of high affinity scores. In contrast, the very few Acitretin combinations show only

moderate outcome. Overall, 607 (70.83 %) of the consultations with known applied treatment

show good response according to the definition stated above.

Applying the forward and backward filling approach described in 4.4.2, missing effectiveness

and ∆PASIrel values can be eliminated and consequently affinity scores also computed for

the 4 instances with missing affinity value. The imputation approach does not maintain the

distribution of affinity scores but especially the number of cases with good outcome, i.e. affinity

≥ 60, is increased to 667 (77.83 %) consultations. Computing Spearman’s rank correlation

coefficient rs for the affinity score and both indicators, effectiveness and ∆PASIrel, strong

monotonic relations rs = 0.82 and rs = 0.90 can be found. As already observed for the correlation

between effectiveness and ∆PASIrel, also correlation between the individual indicators and the

affinity score is negatively affected by the missing value imputation strategies proposed in 4.4.2.

After imputation, the rs = 0.81 and rs = 0.77 are yielded, respectively. As those values can
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Figure 4.15: Affinity scores associated with applied therapies. Affinity scores range from good
outcome ( ) to bad outcome ( ). Five consultations have missing affinity values
( ). Additionally, consultations without systemic treatment ( ), recommenda-
tions which were not applied, and new consultations without known outcome ( )
are shown.

still be interpreted as strong correlation, the applied single value imputation strategy can be

considered a valid approach regarding the summarizing affinity score.

In 122 cases, i.e. 14.24 % out of all 857 consultations which are associated with an applied

systemic therapy, this treatment was changed compared to the preceding consultation. The

information whether the therapy has been changed is only available for patients with more than

one consultation in the database as this information is missing for the first consultation of each

patient. Applied therapies are labeled as changed either if the previous systemic treatment is

different (61) or no systemic treatment was applied (61). However, if interruptions between

the application of the same systemic treatment for a patient are ignored, the overall number

of treatment changes is further reduced to 113 cases (13.19 %). From those, 29 are initial sys-

temic treatments, i.e. changes from topical to systemic treatments, and 84 are changes of the

prescribed or recommended systemic treatment option. The Sankey diagrams pictured in fig-

ure 4.16 illustrates those 113 treatment changes. Here, some patterns can be observed which

capture the prescription or recommendation schemes of the attending physician. Treatment

with Methotrexate is always replaced by the second-line treatment Apremilast or supplemented

with or replaced by a biopharmaceutical drug. Also Cyclosporine is in the majority of cases

replaced by a biopharmaceutical drug. Treatments with Fumaric acid esters, on the other hand,

is in the majority of cases replaced by other conventional treatment option instead of changing
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Figure 4.16: Sankey diagramm of treatment changes. Therapies are labeled as changed if the
previous systemic treatment is different or no systemic treatment was applied. In-
terruptions between the application of the same systemic treatment for a patient
are ignored.
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to biopharmaceuticals. In most cases, Fumaric acid esters are replaced by the the second-line

conventional treatment Apremilast. Acitretin and Apremilast are rarely changed, however, also

only little represented in the data. Furthermore, all conventional treatments seem to have a

preferred biopharmaceutical follow-up therapy as Ustekinumab for Cyclosporine, Etanercept for

Fumaric ester acid and supplementation of Methothrexate with Adalimumab. There are only

few cases in which a biopharmaceutical drug is replaced by a conventional drug. Regarding

treatment with biopharmaceutical drugs only, Secukinumab clearly is a favorites when it comes

to changing biopharmaceutical treatment. And, as also clearly can be seen, only very few cases

exist in which treatment with Secukinumab was changed again. Interestingly, if it was changed,

it was replaced by treatments with conventional pharmaceuticals. Finally, in case of drug com-

binations, the typical follow-up treatment is dropping the conventional supplement and treating

with the biopharmaceutical only or changing to other combinations or biopharmaceutical drugs.

The comparably large portion of cases where treatment was changed from no systemic treat-

ment to the application of a systemic drug divides approximately evenly into cases with initial

conventional first-line treatments and follow-up biopharmaceutical treatments prescriptions or

recommendations.

4.5.3 Treatment History Attributes

As was already shown in table 4.6, the ratio of known previously applied therapies relative

to all possible options for all consultations amounts to 5773 (21.13 %). Figure 4.17 shows the

distribution of the number of previously applied treatments over all consultations in the dataset.

As can be seen, the mode of the distribution is five previous treatments per consultation with

a clearly positive skew (right skewed). In case of seven consultations no previous systemic

treatment is known.

The number of known outcome indicators associated with those previously applied treatments

relative to the number of applied treatments is comparable to the therapies associated with the

recorded consultations. The effectiveness indicator is given for 2837 (49.14 %) of the previously

applied treatments and ∆PASI and ∆PASIrel indicators are given in only 812 (12.19 %) and

702 (12.16 %) cases. The low ∆PASI and ∆PASIrel availability stem from the lacking PASI

and temporal information for all treatments applied previously to the first consultation for a

patient consultation sequence. ∆PASI and ∆PASIrel are only available for treatments applied

during one of the recorded consultations. The density of the affinity score is, with 3683 (63.80 %)

cases, significantly higher, as affinity is also computed if ADEs were reported, as described in

4.3.3. The ratio of reported ADEs is comparably high in the previously applied treatments with

1269 (21.98 %) occurrences.

Figure 4.18 shows the distribution of the 5773 accumulated treatments applied previously to

each consultation n along with the distribution of the available affinity scores.

When comparing the frequency and observed outcome (affinity) of treatment options applied

previously and within consultations shown in figure 4.18 and figure 4.15, different distribu-

tions can be observed. Within the accumulation of previously applied therapies the number

of conventional treatments clearly exceeds the number of biopharmaceutical drugs or combina-
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Figure 4.17: Distribution of number of known previously applied treatments over consultations
in the dataset.
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Figure 4.18: Affinity score distribution of previously applied therapies over consultations. Affin-
ity scores range from good outcome ( ) to bad outcome ( ). For 24 consulta-
tions no previously applied treatments are known.

tions of both. Especially, Apremilast, the only second-line conventional drug, is rarely applied

which indicates that from the group of second-line treatments, biopharmaceuticals are the pre-
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ferred choice of the attending physicians. The different distributions additionally indicate that

the largest portion of accumulated cases stem from treatment applications preceding the first

consultation collected in the present data. Regarding observed outcome, conventional pharma-

ceutical drugs show in the majority of cases of previously applied treatments only moderate or

bad outcome. Biopharmaceuticals and especially combinations of the conventional drug Me-

thotrexate with biopharmaceuticals show comparably better response, however, come by the

majority from recorded consultations. Nevertheless, for the largest portion of accumulated cases

only moderate or bad outcome is observed which reflects the patients’ disease history with in-

appropriate treatment. When comparing treatment frequency and response, it must be kept

in mind that for patients which are represented in the data by multiple consultations, also the

treatment history partly occurs multiple times in the data. Thus, those patients have larger

impact on the shown distribution. Additionally, the distribution is influenced by the differing

times when treatments were approved and hence entered routine patient care.

4.6 Study on Inter-Rater Reliability

For extension and validation of the provided ground truth, therapy recommendations are col-

lected from six experts (dermatologists from different clinics in Germany) for a subset of 100

consultations from different patients. Additionally, the experts are asked to assess the retro-

spective therapy decisions if therapy recommendations disagree. The randomly selected subset

comprises 74 consultations in which therapy was actually changed and 26 without change. A

web-based survey tool was developed which presents consultations, represented by patient data

and therapy history, to the expert and requests a treatment decision out of the in table 4.3 listed

options. Therefore, up to three options are requested to be selected and prioritized. If none of

the selected options meet the ground truth, the expert surveyed is asked to confirm whether the

actually applied treatment is an acceptable alternative for him/her or not.

Out of the six experts, only four of them assessed all 100 test consultations, one assessed 50

and one 26 cases. These overall numbers are reflected by the number of at least one therapy

recommendation, i.e. priority 1, for the respective consultation. The number of recommend-

ations of the various priorities are summarized in figure 4.19 (a). The declining number of

recommendations with decreasing priority can be interpreted such that each expert obviously

has his/her favored therapy option for which he/she considers few or no alternatives. Figure 4.19

(b) shows the ratio of consultations for which the assessing expert’s recommendations agree with

the ground truth or not. Additionally, the ratio of cases in which the actually applied treatment,

even though not selected by the survey expert, is still regarded as an acceptable alternative.

In the following, only expert 2, 4, 5, and 6 are considered who have assessed all 100 test

consultations. To quantify inter-rater reliability, Cohen’s [191] and Fleiss’ [104] Kappa scores

are computed. Cohen’s Kappa between ground truth and the highest priority treatment option

of each expert yields and average score of κ1 = 0.33 with standard deviation of κ1 = 0.2, whereas

the largest agreement is shown for expert 6 with κ1 = 0.35. Among the four experts having rated

all 100 sample patients, the agreement between expert 4 and 5 is the largest with κ = 0.39. All
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Figure 4.19: Number of recommendations of the various priorities 1 ( ), 2 ( ) and 3 ( )
(a) and number of consultations for which the expert’s recommendations agree with
the ground truth ( ), are considered an acceptable alternative ( ) or not ( )
(b).

those scores are considered fair agreement according to [191]. Cohen’s Kappa between ground

truth and either of the selections of each expert yields larger values and moderate agreement

with κall = 0.49(0.05) and the largest score κall = 0.53 for expert 6. Fleiss’ Kappa, which

assesses the overall agreement among all four experts and the actually applied treatment, attains

fair agreement with κ = 0.34 if only the highest priority recommendations are included, but

moderate agreement with κ = 0.47 if computed from all selections. It is further observed, that,

with decreasing number of commonly assessed consultations but increasing number of raters,

Cohen’s Kappa scores also decrease whereas, however, Fleiss’ Kappa increases.

According to the computed Kappa scores, the variety of therapies considered to be optimal is

rather large and the agreement at most moderate. This finding reflects clear preference differences

among the surveyed experts and the existence of many therapy options which are considered

to be appropriate. This observation is additionally confirmed by the fact that the surveyed

experts consider the actually applied therapy in at least 36 % (expert 4) of the presented cases

an acceptable alternative even though not selected among the three most suitable treatments.

The expert with the largest deviation from ground truth (41 %), expert 5, considers the actually

applied therapy in 75.6 % of those cases still as acceptable alternative. In general, the largest

deviations among therapy recommendations can be observed in cases where therapy history of

the respective patient does not contain any previous systemic therapies or therapy was changed

in this consultation. In contrast, large agreement can be observed in cases were a well functioning
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therapy is continued.

On the one hand, this overall heterogeneity demonstrates the difficulty the decision maker is

confronted with to select the optimal option and how subjective the selection is. On the other

hand, the low inter-rater reliability also makes clear that the available ground truth should be

considered with caution as there obviously exist alternative hidden ground truths which encode

possibly more optimal treatment options.
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Initially, in section 5.1, the system to be developed is brought into context with the CDSS

definitions from the literature described in section 2.1. Furthermore, the transfer of RS concepts

into CDSSs is motivated and essential differences to their typical application are named. In

section 5.2, the evaluation strategy is defined. Detailed descriptions of the applied algorithms

are given in section 5.3, 5.4, and 5.5, respectively. In section 5.6, finally, the integration of

evidence-based exclusion rules is specified. The described algorithms and results are published

in [134, 136, 133].

5.1 Introduction

As already introduced in chapter 1 and with respect to the taxonomies described in section 2.1,

the overall objective of this work is developing a CDSS which supports decision-making regard-

ing the prescription of drugs [121] or ordering of treatments [386]. The clinical practitioner is

intended to be provided with individualized and patient-specific therapy recommendations based

on a patient-data model [318]. As the intention is to take detailed patient characteristics, such as

diagnosed disease and health status, comorbidities and the patients’ previous response to drugs

into account, the system to be developed can be, according to [366], characterized as medication-

related CDSS with advanced decision support. Furthermore, in accordance with [386], such a

system can be categorized into the group of expert system CDSSs. However, whereas expert sys-

tems typically are defined to derive recommendations or suggestions using knowledge stored in

rule sets (if-then rules), here a non-knowledge-based or intelligent computing system [29, 255] is

to be developed, which is capable of extracting knowledge automatically from the available data.

As they are very successfully applied in other product recommendation settings, methods

borrowed from the RSs domain are considered to be particularly appropriate. RSs typically aim

at providing a target user with personalized recommendations by predicting his or her preference

in order to derive a ranked list of items. Personalized therapy recommendations can be regarded

as a comparable task considering patients as target users and the therapy options as items.

However, with two essential differences:

(a) Source of feedback: RSs typically leverage implicit or explicit feedback to derive personal

suggestions. In the therapy recommendation setting, generating such feedback is ideally not

a subjective process but it is derived from (multifactorial) objective measures which quantify

treatment outcome but can also encompass additional aspects, such as costs or applicability of

a treatment options [49].
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(b) Stakeholder making decisions: In contrast to traditional RS applications, in the therapy

recommender system setting, the final choice of the product is not made by the user, i.e. the

patient, but by the attending physician, however, ideally incorporating the patient’s preferences.

According to section 3.2, five basic RS concepts are typically distinguished. As no attrib-

utes describing the actual items, i.e. drugs, are given, content-based approaches cannot be

applied. Furthermore, as the objective is to develop a system which automatically extracts in-

formation from the available data and adapts to evolving datasets, knowledge-based approaches,

depending on static domain knowledge, are also discarded. In this work, the concept of deriving

recommendations by exploiting correlations among users (i.e. patients) is employed. Hence, in

order to predict the adequacy and derive personalized recommendations, the transfer of CFs to

CDSSs is studied. In this work, basically two neighborhood-based, i.e. memory-based methods

(section 5.3), differing in the data used to represent a consultation, and two model-based CF

approaches (section 5.4 and 5.5) are compared.

In the therapy recommendation setting, all those algorithms have in common to (1) predict out-

come of the included therapy options and (2) rank the treatments according to this prediction.

Suchlike, it is intended to recommend treatments regardless of general popularity or average

efficiency, but rather a selection that is tailored to a target patient and consultation at hand.

In order to take the multifactorial outcome aspects into account, the summarizing affinity score

is employed to quantify treatment response. Furthermore, to incorporate evidence and reduce

the risk of inappropriate recommendations, (3) exclusion rules, such as contraindications and

recommendations regarding the sequence of treatments as described in the current S3-Guidelines

[240] and specified by the Clinic and Polyclinic for Dermatology, University Hospital Dresden,

are implemented in a post-filtering layer (section 5.6). As described in section 5.2, accuracy of

the predicted outcome is evaluated by computing the RMSE between predicted and actually

observed outcome (affinity score) and the quality of the ranked list of recommendations is as-

sessed by computing the Mean Average Precision (MAP)@3. For model selection and system

evaluation a nested cross-validation as described in section 5.2 is employed. Figure 5.1 shows

the processing and evaluation chain for a recommendation query together with all inputs and

associated outputs.

Figure 5.1: Therapy recommendation processing and evaluation pipeline.

As described in section 4.3, the number of available pharmaceutical drugs along with combina-
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tions add up to M = 22 different treatment options. Some options are, however, just represented

by very few occurrences in the available data. Neighborhood-based CF methods can be capable

of coping with the so called long tail problem [258], i.e. a large proportion of items for which only

little user feedback is available. Reliability, especially of the model-based CF algorithm, how-

ever, renders difficult for underrepresented therapy options. In order to facilitate comparability

between the investigated algorithms, consultations associated with therapies with occurrences

below a defined threshold (30 consultations) are neglected in the following. Here, a trade-off

must be found between the amount of data which is discarded and a lower boundary of data

representing a treatment option for appropriate modeling. Assuming a 5-fold cross-validation

and stratified data partitioning, the chosen number guarantees on average a minimum number

of 6 consultations for all included treatments and folds. Out of the M = 22 treatment options,

the included therapies are the two conventional drugs Fumaric acid esters (86) and Metho-

trexate (54), the five biopharmaceutical drugs Adalimumab (99), Etanercept (103), Infliximab

(46), Secukinumab (47), Ustekinumab (218), and the combination of Methotrexate and Inflix-

imab (30). Figure 5.2 pictures the distribution of the included therapy options. In total, 687

(80.54 %) out of the 853 consultations and 181 (75.73 %) out of the 239 patients with known

systemic treatment outcome are included into system development and evaluation.

As is shown in figure 4.3.5, the data of the overall N available consultations is organized in

related matrices data matrix X, previous outcome matrix A, and outcome matrix Y. Individual

patients and chronological ordering of consultations are ignored and each consultation is con-

sidered as an independent instance. Based on these matrices, the consultation representation

matrix X̃, the historic consultation-therapy outcome matrix Ã
hist

, the complete consultation-

therapy outcome matrix Ã
all

, and the consultation outcome matrix Ỹ are derived as follows.

The consultation representation matrix X̃ (figure 5.3) is the concatenation of the N × D data

matrix X and the N × M submatrices which represent the attributes effectiveness, ∆PASI,

ADE, affinity score, and therapy decisions stored in the previous outcome matrix A for each of

the M therapy options. The idea of extending the data matrix X is to additionally capture in-

formation on treatment history in the consultation representations. The selection of attributes,

namely which previous outcome indicators to incorporate, is based on preliminary studies and

are those which showed the highest increase in performance.

In the historic consultation-therapy outcome matrix Ã
hist

, the N × M submatrix of A is

stored which represents the affinity scores of all previously applied treatments. The complete

consultation-therapy outcome matrix Ã
all

holds the N × M submatrix of affinity scores of A,

however, including the treatment and outcome applied in the current consultation n of a pa-

tient p which is stored in Y. Thus, a vector ãall associated with a consultation n of patient

p corresponds to the vector ãhist associated with the consultation succeeding consultation n

(consultation n + 1) of this patient p (figure 4.4).

Finally, the outcome matrix Ỹ holds the N × M affinity score submatrix of Y.
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Figure 5.2: Overall occurrence of therapy options, applied threshold (30 consultations), and
selected subset of options.

Figure 5.3: Consultation representation matrix X̃, i.e. concatenation of data matrix X and
selected outcome indicators from the previous outcome matrix A.
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Figure 5.4 visualizes the available input to the therapy recommendation system. The inform-

ation actually used varies among the algorithms applied.

Figure 5.4: Therapy recommender system input. The information actually used varies among
the applied algorithms.

5.2 Evaluation Strategy

As the temporal consultations of the individual patients cannot be regarded to be independ-

ent and identically distributed (i.i.d.), a patient-wise evaluation scheme is applied in this work.

However, the application of a holdout method, which divides the limited number of 181 patients

into a training and test partition, would potentially result in a very biased estimate of the gener-

alization performance. The results would be highly dependent on the chosen partitions. An issue

which is additionally enforced when holding out a third validation partition for model selection,

i.e. hyperparameter tuning. Hence, to make most of the available data and ideally provide an

unbiased estimate of the true generalization error, a P × 5 nested cross-validation approach is

applied in his work for model selection and generalization performance estimation which was

found to provide almost unbiased performance estimates [280, 364]. The realized approach is a

nesting of two patient-wise cross-validation loops as pictured in figure 5.5 exemplarily for the

consultation representation matrix X̃. Ã
hist

, Ã
all

and Ỹ are partitioned in analogously.

The outer loop implements a leave-one-patient-out cross-validation, which in each iteration

p ∈ P holds out the consultations of the test patient p for evaluation. For this test patient p,

an individual model on the basis of all patients apart from p is evaluated. For each consultation

of the hold out test patient the accuracy of the predicted outcome is evaluated by computing

the RMSE between predicted and actually observed affinity score. Additionally, the MAP@3

assesses the generated ranked list of recommendations up to position 3. The average RMSE

and MAP@3 scores reflect the overall performance of this model applied to the test patient

p’s consultations. Finally, average and variance of RMSE and MAP@3 is computed over all

iterations p to estimate the overall generalization performance.

The inner loop applies shuffled 5-fold cross-validation for model selection on the basis of all

consultations apart from test patient p. To avoid bias due to potential sample dependencies

as described above, also the inner loop is implemented suchlike that in no iteration i the same
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patient enters different folds. The data partitioning is carried out in such a way that each fold

approximately contains the equal number of consultations. Within this inner loop, the 5-fold

cross-validation performance is calculated for all considered model variants (grid search) and

the best performing model is selected.

Figure 5.5: Nested cross-validation approach [280] for model selection and evaluation. The outer
loop implements a patient-wise cross-validation over all p ∈ P patients, the inner
loop implements a 5-fold cross-validation, however, without mixing consultations of a
patient p into test and training partition in any iteration i. Here, the example for the
consultation representation matrix X̃ is shown. Ã

hist
, Ã

all
, and Ỹ are partitioned

in the identical way.

Finally, the performance of the most promising algorithms and system variants is compared

with the recommendations of human experts. Therefore, the subset of 100 test consultations and

dermatologists’ recommendations described in section 4.6 are used. Comparable to the nested

cross-validation from above, a patient-wise cross-validation scheme is employed. For each of

the test consultations, an individual model, based on the remaining patients’ consultations, is

utilized within an outer validation loop. The respective model is optimized and selected on the

basis of the inner 5-fold cross-validation results.
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5.3 Collaborative Filtering

As stated above, the neighborhood-based CF approach is transferred to the application of ther-

apy recommendation. In case of the user-based approach as applied in his work, the prediction

of a rating r̂ui of user u on an item i is based on the feedback on i of the subset of most similar

users to u. In the therapy recommendation setting, consultations n are regarded as users and

therapy options m as items. The intention is to exploit consultation similarity, i.e. similarity

between patients at a point in time. Suchlike, patterns in both, patient characteristics and

response to previous treatments are intended to be revealed.

Each consultation k of a training partition is represented by a respective vector ãk from the

complete consultation-therapy outcome matrix Ã
all

and holds the affinity scores for all treatments

ever applied to the respective patient up to and including this training consultation, as described

above. In contrast, each test consultation n is represented by a test vector ãn
test which stems

from the historic consultation-therapy outcome matrix Ã
hist

and hence only holds the affinity

scores of therapies applied up to the consultation under consideration. All ãk and ãn
test are

aggregated in Ãtrain and Ãtest, respectively. The outcome matrices Ỹtrain and Ỹtest hold the

ground truths ỹk and ỹn
test, which are the affinity scores of the systemic treatment actually

applied in the respective consultations k and n. The objective is to predict the outcome of

treatments in test consultation n. The subsets of training and test data Ãtrain, Ãtest and Ỹtest

depend on the iterations p and i according to the evaluation strategy described in section 5.2.

When predicting outcome ŷn
m, an affinity score for each therapy option m is estimated for

all test consultations n as visualized in figure 5.6 for treatment option m1 and an exemplary

n. As described in section 3.2.2.1, in the user-based CF approach this outcome prediction is

regarded as a neighborhood-based regression problem and is computed as a linear combination

of observed outcomes in the neighborhood of n. The neighborhood of size K is determined using

heuristic similarity measures sn,k for each test consultation n. The similarity measures sn,k are

further employed as the k ∈ K regression coefficients to estimate ŷn
m by computing the weighted

average of all observed outcomes for each m according to

ŷn
m =

∑K
k=1 ãk

m · sn,k

∑K
k=1 |sn,k|

(5.1)

Here, it must be kept in mind that outcome estimates can be computed for therapies only which

appear at least once in the neighborhood of n. That means, besides predicting outcome the

algorithm already selects a subset of therapies from all available options.

In a subsequent recommendation step, all systemic treatment options for which an affinity

prediction is available are ranked according to that prediction. The top-N ranked entries are

recommended and evaluated regarding recommendation quality. If ties occur, i.e. the affinity

score prediction of two therapy options equal, they are broken by recommending the more

effective treatment according to the entire training partition.

To evaluate the accuracy of the predicted outcome, RMSE between predicted and actually

observed outcome is computed as described in section 5.2. For each test consultation n, only one
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Figure 5.6: Outcome ŷn
m of treatment option m1 is estimated for a test consultation n by aggreg-

ating all outcomes observed for m1 in the treatment history of the K most similar
training data consultations. Therefore, the weighted average of all outcomes for m1

observed in that neighborhood is computed. [133]

ground truth value, i.e. applied therapy and known outcome is available in ỹn
test. Furthermore,

prerequisite to compute a RMSE is that an affinity score estimate can be provided for this

actually applied therapy. Missing overlap of prediction and ground truth does not affect the

RMSE calculation as the average score is only calculated using the existing values. However,

reliability of RMSE suffers if computed from little overlapping observations and this overlap

directly affects the MAP@3. On the one hand, one can assume that a neighborhood of similar

consultations is not only characterized by similar outcome but is also characterized by commonly

applied therapies yielding good MAP@3 scores even when recommending only few option. On

the other hand, for small neighborhood sizes K, the coverage [152] of available treatment options

can become very low which reduces the probability of recommendations overlapping with the

actually applied treatment. Therefore, the ratio of neighbors from which RMSE can be computed

(overlap) and ratio of overall recommended treatment options (coverage) are also monitored

during evaluation. When defining the neighborhood sizes K, a trade-off needs to be found, as

large K increase overlap at the expense of deteriorating prediction accuracy and recommendation

quality due to inclusion of inappropriate consultations.

Based on those considerations and with respect to the overall objective to optimize outcome

prediction accuracy, two criteria are defined to be met for a model to be selected in the inner

cross-validation loop: (1) the average number of recommendations overlapping with the actually

applied treatment is overlap > 95 % and (2) prediction accuracy (RMSE) is minimal.

The applied similarity measure sn,k to compare consultation representations, has crucial im-

pact on the prediction results. In the following, various approaches are introduced and studied

which differ in data and similarity measure utilized to define sn,k.

5.3.1 Conventional Collaborative Recommender (CF)

Firstly, a conventional neighborhood-based CF approach is implemented. Consultations are

compared based on the outcome of commonly applied previous therapies as pictured in fig-

ure 5.7. Consultations are regarded as similar if outcome on commonly applied therapies is

similar according to the applied similarity measure. The experience with therapies observed in
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the neighborhood of a target consultation which have not yet been applied to the respective

patient are transferred to this consultation. This approach is comparable to recommending

items based on users’ ratings on previously purchased products. The underlying assumption is

that therapies applied to a given patient within his or her treatment history and the associated

outcomes reincorporate meaningful information about that respective patient and consultation.

Figure 5.7: In the conventional CF approach, consultations are compared concerning treatment
history stored in ãk and ãn

test, respectively.

The similarity measure sn,k is defined by a function s(ãn
test, ãk) which calculates a pairwise

similarity between the test consultation representation ãn
test and all training consultation rep-

resentations ãk. All attributes in Ãtrain and Ãtest have equal quantitative data type and are

measured with equal scale. Hence, no normalization of the data is required to equal the impact

of the individual dimensions. However, consultation representations are rather sparse, meaning

that outcome for treatment options is only intermittently available. On this account, similarity

between two consultation representations is only computed between commonly available entries

which does not impact the choice of similarity functions but can affect the reliability of the

computed value.

As detailed in section 3.1, there are numerous functions suitable for computing pairwise similar-

ity sn,k of such consultation representations. In the context of RS, especially Cosine similarity

and the Pearson correlation coefficient are widely used, however, also the Euclidean or Man-

hatten distance, i.e. the Minkowski metrics with p = 1 and p = 2 are appropriate for similarity

computation. All four metrics are considered in the model selection process. As the proposed

CF algorithm is based on similarity measures sn,k, the distance metrics Euclidean and Man-

hatten distance need to be converted to similarity measures. Here, a RBF, as introduced in

section 3.1.2 is employed for that purpose.

As was shown in own preliminary studies, best performance could be achieved with the RBF

spread parameter σ = 0.25. However, as was also found, σ has only minor influence on predic-

tion and recommendation performance, which only becomes slightly apparent when k increases.

This can be explained with the overall small distance for a wide range of k which in turn results

in overall high similarity coefficients for a wide range of σ. Consequently, as similarity coeffi-

cients are very homogeneous, weighting of values contributing to the averaged score plays just
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a minor role. The number K of neighboring consultations which are included into the compu-

tation, however, is crucial and needs to be chosen cautiously. It can be assumed that small K

means low bias but high variance, while with increasing K, variance is decreased at the expense

of increased bias. Thus, K is considered as a hyperparameter that is optimized in the model

selection process.

The proposed conventional CF approach requires the associated test patient to have experience

with at least one therapy in its therapy history (cold start problem). Moreover, reliability of

the computed similarity can depend on the number of co-occurring therapies in consultation

representation vectors. This, in turn, can impact accuracy of recommendations as was shown in

other CF applications [152, 27]. To overcome such reliability issues, significance weighting [152]

or shrinkage [27] were proposed, which penalize the similarity measure by taking the number of

mutually rated items into account. In this therapy recommendation setting, however, applying

such methods did not increase performance according to own preliminary studies.

5.3.2 Patient-data Collaborative Recommender (DR)

To overcome the cold start problem, the stated reliability issues and to make use of the ad-

ditional, presumably meaningful information in the patient data, the described conventional

CF is extended to a hybrid patient-data approach (see section 3.2.3). Information on previous

treatment outcome is combined with available patient data for similarity computation.

Figure 5.8: In the patient-data CF approach, consultations are compared concerning patient
data and treatment history stored in x̃k and x̃n

test, respectively.

Consultations n and k are represented by vectors x̃n
test and x̃k which are derived from the con-

sultations data matrix X̃ and stored in matrices X̃train and X̃test, respectively. As described in

section 5.1 and visualized in figure 5.3, X̃ combines both, patient data and outcome of previously

applied therapies. Hence, the heuristic similarity measure sn,k which determines the included

neighborhood and the regression coefficients is defined by the function s(x̃n
test, x̃k). Figure 5.8

visualizes the neighborhood of an exemplary test consultation representation x̃n
test.

In contrast to the consultation-therapy outcome matrices Ãtrain and Ãtest, the attributes in the

consultations data matrix X̃ are highly heterogeneous, i.e. they are of different levels of measure-

ment. Thus, the similarity function applied in section 5.3.1 to determine sn,k are not appropriate
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for the concatenated data. Furthermore, as described in chapter 4 and listed in table 4.4, also the

patient data vectors x̃ comprise, dependent on the applied imputation strategy, frequently miss-

ing values. As mentioned in section 3.1.4, the Gower similarity coefficient measures similarity

at the presence of mixed data types and missing values. The similarity function sGSC(x̃n
test, x̃k)

defines an overall coefficient sn,k which is computed out of the individual attribute similarities

ρn,k
d , depending on their presence δn,k

d and assigned weights wd

sn,k =

∑D
d=1 δn,k

d · wd · ρn,k
d

∑D
d=1 δn,k

d · wd

. (5.2)

ρn,k
d quantifies the similarity between two instances according to the dth attribute, depending on

the data type. The coefficient δn,k
d controls whether to include ρn,k

d into the similarity computa-

tion or not. δn,k
d is set to 1 if the respective attribute is known for both instances and set to 0

otherwise. Hence, with increasing number of missing values, the overall similarity measure sn,k

is based on comparison between fewer attributes and the reliability of sn,k suffers. Therefore,

when evaluating the proposed patient-data CF approach, the impact of the missing values in

the patient data is investigated. For this purpose, the originally provided data and the two

proposed levels of imputation are compared.

Furthermore, also the Euclidean distance, i.e. the Minkowski metric with p = 1 can be em-

ployed do derive a similarity function sEuc(x̃
n
test, x̃k) using a RBF as introduced in section 3.1.2.

The spread parameter has shown to achieve good results if set to σ = 0.25, but has only

minor influence on prediction and recommendation performance. Prerequisite for computing

the Minkowski metric are all attributes in the attribute space having a quantitative data type

which allows for pairwise attribute subtraction. Hence, qualitative attributes must be converted

to a quantitative scale, namely at least the interval scale. Subtraction of dichotomous attributes

can be regarded to yield valid distance measures in the value range [0, 1]. Nominal attributes

are converted by applying one-hot-encoding which creates one dichotomous dummy feature for

each of the available categories of a specific attributes. Those, in turn, allow for subtraction

as stated before. Ordinal attributes are transformed to the interval scale analogously to the

Gower similarity coefficient. As a result of this attribute preprocessing strategy, the dimension

of the consultation representation X̃ is further expanded to D = 165 attributes. Additionally,

in comparison with the patient-data CF utilizing the Gower similarity coefficient, which already

incorporates data normalization, utilizing Euclidean distance requires normalization as an essen-

tial preprocessing step. All attributes are rescaled to the closed unit interval [0, 1] by subtracting

minimum values and dividing each attribute x̃ by its range (min-max normalization). Compar-

ably to the Gower similarity coefficient, also Euclidean distance is only computed on mutually

available attributes when comparing consultation representations. Hence, sEuc(x̃
n
test, x̃k) defines

the similarity coefficient sn,k as

sn,k = Kσ







√

√

√

√

∑D
d=1 δn,k

d · (x̃k
d − x̃n

test,d)2

∑D
d=1 δn,k

d






(5.3)
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with the coefficient δn,k
d controlling whether to include the dth attribute into the similarity

computation or not and the RBF kernel Kσ(·).

The number of comparable attributes is significantly increased in the patient-data CF ap-

proach which is prone to reinforce the problems associated with the curse of dimensionality.

According to own preliminary experiments, however, dimensionality reduction methods such as

MF (see section F.2), did not prove to be beneficial for the problem at hand. The performance

regarding prediction accuracy or recommendation quality could not be improved by applying

such methods.

5.3.2.1 Attribute Selection and Weighting (DR-RBA)

As described in section 3.1.5, individual attributes typically are of varying importance concerning

the similarity sn,k between two user or patient representations. Attributes can even be entirely

irrelevant or redundant, introduce noise and worsen the informative value of the similarity

coefficient. Moreover, the curse of dimensionality requires the dimension of the data to be as

low as possible to facilitate a meaningful concept of similarity. As a consequence, both the

unweighted inclusion of attributes and the inclusion of irrelevant or redundant attributes can

affect the performance of neighborhood-based CF algorithms substantially. Furthermore, low

data dimensions bear the additional potential to reveal insights into the factors determining

therapy outcome and to lower computational complexity and required storage.

Consequentially, it is an obvious strategy to modify the above proposed patient-data CF ap-

proach in order weight the individual attributes according to their relevance (attribute weighting)

and to remove irrelevant ones (attribute selection) before computing similarity. As described in

section 3.1.4 and applied in section 5.3.2, the Gower similarity coefficient facilitates to assign

weights wd to each attribute when computing similarity. Accordingly, weights for attributes to be

discarded are set to 0 and scaled in accordance with the estimated attribute relevance otherwise.

Subsequently, the local neighborhood of a target consultation can be computed and outcome

can be estimated for available treatment options as described in section 5.3. The unweighted

version of the Gower similarity coefficient is considered as baseline in the following.

Selection or adjustment of attribute weights can either be based on a priori knowledge about

attributes or attribute importance is extracted automatically from the given data. Wrapper

methods are powerful tools regarding automatic attribute selection by determining the perform-

ance of an attribute subset (section 3.1.5). For assigning numeric weights to individual attributes

which appropriately reflect their importance regarding a given classification or regression task,

however, filter methods are more suitable. As wrapper methods, many filter-based attribute

weighting and selection algorithms rely on supervised information such as known class labels or

dependent variables of some training data. Based on such information, univariate or multivari-

ate criteria can be defined which measure importance directly, e.g. from the correlation between

attributes and the given class label or dependent variable. In the proposed patient-data CF

approach, however, heuristic similarity measures are used to (1) identify relevant samples, i.e.

consultation representations from the data basis and to (2) define the impact of those individual

samples on the outcome prediction. It is therefore an obvious approach to incorporate a priori
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assumptions concerning similarity and dissimilarity between consultation representations and

determine attribute weights suchlike that a similarity criterion is optimized.

A widely and successfully used class of attribute weighting and selection algorithms which

exploit the concept of similarity are RBAs, as initially proposed by [171] and, among others,

extended by [177]. In contrast to most other filter approaches, especially RBAs are supposed

to have the potential to even take interactions and dependencies among attributes into account

[363]. In this work, a generalization of the mentioned algorithms is adapted to the given patient-

data CF approach (algorithm 1). The attribute weights are determined for each outer cross-

validation loop using the training sets X̃
p
train. Within an iterative process a random sample, i.e.

the target consultation x̃j is drawn from X̃
p
train and, based on this sample, each dimension wd

of an attribute weight vector w is updated according to

wd = wd + (ρ̄hits
d − ρ̄misses

d )/J (5.4)

The adaption of an attribute weight wd is determined by the KRBA nearest neighbors of the

target with the same class, i.e. the nearest hits (X̃
j,hits
train ) and the KRBA nearest neighbors with

different class, i.e. nearest misses (X̃
j,misses
train ). The average of observed value differences ρ̄hits

d and

ρ̄misses
d computed for an attribute d between target x̃j and the respective neighboring instances

determine the update of the attribute weight wd in each iteration. The values ρ̄hits
d and ρ̄misses

d

are normalized by the number of iterations J , yielding weights wd in the interval [−1, 1] when

wd is initialized with zeros. The underlying assumption is that attributes with large average

similarities ρ̄hits
d between target x̃j and nearest hits X̃

j,hits
train bear meaningful information regarding

the class label. Thus, wd is increased depending on that similarity. Conversely, attributes with

large average similarities between target x̃j and nearest misses X̃
j,misses
train , i.e. large ρ̄misses

d , are

assumed to be not informative regarding the class label and thus wd is decreased depending

on that similarity. Here, in accordance with the applied Gower similarity coefficient, similarity

between two samples is quantified with a ρd depending on the data type of the dth attribute.

The unweighted Gower similarity coefficient is also used to initially find the nearest neighbors,

i.e. nearest hits and nearest misses. In contrast to the algorithms proposed in [171] and [177],

where the attribute weight vector wd is initialized with zeros, here a variable initial value in

the interval [0, 1] can be chosen. After iterating over all J randomly selected observations the

resulting weight vector wd is normalized by the sum of all weights. As proposed in [171], all

attribute weights dropping below a predefined relevance threshold thrw, are discarded. That

means, only attributes are selected for which applies wd ≥ thrw. In total, three additional

hyperparameter need to be determined within the inner cross-validation loop. The number of

nearest hits and nearest misses KRBA, the initial feature weight vector winit, and the weight

threshold thrw for feature selection. The total number of iterations J is parameterized suchlike

that each observation is selected once.

The typical RBA assumes a supervised classification problem where each sample is associated

with a distinct class. In the context of the present therapy RS problem, each sample, i.e.

consultation, is characterized by a quantitative outcome indicator for the applied therapy option
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and unknown outcome for all other options which have not been applied (hidden ground truth).

Consequently, a priori assumptions concerning the relationship, i.e. similarity or dissimilarity

between a pair of consultations can only be derived from those samples which applied therapies

in common and for which in both cases outcome is known. Regarding this relationship, three

groups can be distinguished. (1) Two consultations are similar to each other, if the respective

patients respond similarly to the given treatment option. Both consultations are labeled with the

same therapy and outcome is similar. (2) Two consultations are dissimilar to each other, if the

respective patients respond differently to the given treatment. Both consultations are labeled

with the same treatment but outcome differs. (3) No information on similarity is available for a

pair of consultations which are labeled with different therapies. The response of the respective

neighboring patient on the treatment given to the target patient is unobserved. As stated, in the

context of the RBA algorithm, nearest hits are the closest observations to the target observation

which are considered to be similar, whereas nearest misses are the closest observations which

are considered to be dissimilar. Therefore, applying the groups described above, nearest hits

X̃
j,hits
train to a target consultation x̃j are the KRBA closest consultations associated with equal

therapy and similar response, whereas nearest misses X̃
j,misses
train are the KRBA closest observations

to x̃j associated to equal therapy but differing outcome. Here, similar response means that

both outcome indicators, i.e. affinity scores, have the same polarity regarding a predefined

threshold thrgood = 0.5 which divides treatment responses into good and bad outcome classes.

The neighboring consultations to a target consultation x̃j associated with different therapy

options are, independent of their outcome, not included into the KRBA neighbors as they hold

no information regarding the relationship between x̃j and those consultations.

Figure 5.9 illustrates an exemplary neighborhood of the representation x̃j of a target con-

sultation j where the applied treatment, here m1, showed good response (affinity > 0.5). All

KRBA neighboring consultations x̃k are labeled as similar to x̃j if the same treatment is present

in ãk and if the respective treatment has also shown good response, i.e. equal polarity (green).

Conversely, all KRBA neighboring consultations are labeled as dissimilar to consultations x̃j if

the same treatment is present in ãk but this treatment has shown bad response, i.e. has differ-

ent polarity (red). Neighboring consultation representations with equal treatment applied and

equal polarity are considered as nearest hits and representations with equal treatment applied

but differing polarity are considered as nearest misses. Regarding neighboring consultation rep-

resentations x̃j for which is true that the in consultation j applied therapy was never applied,

no information regarding the similarity label is available. Training consultation k = 54 (white)

is not associated with therapy m1 but with different therapy options and hence is discarded.

As described in section 3.1, with growing dimensionality the meaning of distance or similarity

looses validity and hence the determination of neighbors becomes increasingly random. Con-

sequently, also the performance of RBAs has been shown to deteriorate with a growing number

of attributes and learned weights become increasingly unreliable. Furthermore, RBAs define

the nearest neighbors in the original unweighted attribute space which is highly unlikely to be

the same in weighted space [339]. To address both stated issues, several works suggest iterative
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Figure 5.9: The RBA algorithm assumes a supervised classification problem. Consultations in
the neighborhood of a target consultation j are labeled as similar or dissimilar if the
same treatment was applied, here treatment option m1, and the outcome polarity is
equal (green) or different (red), respectively. No information regarding the similarity
label is available for consultations were the treatment from consultation j was never
applied (white).

RBA approaches, which run the attribute weighting algorithms multiple times. In each iteration

the attribute weights w from the previous iteration are used to compute the neighborhoods of

target observations x̃
j
train. Suchlike, low scoring attributes from the previous iteration have less

influence on the similarity computation in the subsequent iteration or are completely discarded

[93]. However, the iterative RBA approach did not show any performance improvements in the

present problem in preliminary studies.

The general advantage of attribute weighting and selection approaches over dimensionality

reduction approaches is their capability to maintain the physical meaning of the original attrib-

utes in favor of explainability and interpretability. As stated beforehand, the numeric weights

assigned to individual attributes which reflect attribute relevance allow to extended the ex-

planation of recommendations by another dimension. In addition to information derived from

the included neighborhood, the influence of the individual factors can be shown and, if neces-

sary, even manually adjusted. As attribute weights are learned automatically from the data, no

domain knowledge concerning the attributes is required.

5.3.2.2 Metric Learning (DR-LMNN)

Dropping irrelevant attributes and scaling the remaining dimensions in the attribute space ac-

cording to the estimated relevance of an attribute is a straightforward approach and has shown

to improve the performance of neighborhood-based classification algorithms in other applications

[363]. Especially applying linear transformation to the data are widely and successfully used

preprocessing strategies in the context of classification and data analysis. In comparison with

attribute weighting, such transformations not only scale the dimensions of the attribute space

but rotate the basis of the coordinate system in order to adapt to the data at hand. Suchlike, in

contrast to the proposed RBAs, correlations among attributes and the distribution of the data
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Algorithm 1: CF-RBA

Input : D-dimensional patient data X̃
p
train of size Np

train

M -dimensional outcome Ỹ
p
train of size Np

train

Number of iterations J
Number of nearest neighbors KRBA

Initial attribute weights vector winit

Relevance threshold thrw

Output : D-dimensional attribute weight vector w

Initialize : Initial w with winit

for j = 1...J do
Randomly select target consultation xj ;
find KRBA nearest hits X̃

j,hits
train and nearest misses X̃

j,misses
train ;

for d = 1...D do
Compute average similarity of nearest hits ρ̄hits

d ;
Compute average similarity of nearest misses ρ̄misses

d ;
Update attribute weight vector wd = wd + (ρ̄hits

d − ρ̄misses
d )/J ;

end
Normalize attribute weight vector wd = wd/sum(w);
Discard attribute dropping below relevance threshold wd < thrw;

end

in the attributes space are taken into account. This bears the potential to yield more meaningful

neighborhoods, however, at the expense of explainability as the resulting latent features will be

more difficult to interpret.

Also in the context of the proposed patient-data CF approach it is assumed that the mul-

tivariate distribution of the data has crucial impact on the similarity computation and hence

the outcome estimation of the regression algorithm. Furthermore, it is assumed that certain

attributes are redundant or correlate strongly. Hence, in order to improve outcome prediction

accuracy of the patient-data CF, linear transformation of the data before computing similarity

may be a beneficial preprocessing approach.

Mahalanobis distance [211, 254] incorporates linear transformation x′ = Lx of the present

data x before computing Euclidean distance between two samples xi and xj in the transformed

attribute space according to

dL(xi, xj) = ||L(xi − xj)||22 (5.5)

Expressing the metric formulated above in terms of the square matrix M = LT L yields the

squared distance

dM (xi, xj) = (xi − xj)T M(xi − xj) (5.6)

M is allowed to denote any positive semidefinite matrix in order to yield a valid (pseudo-)

metric. Employing the inverse covariance matrix as M, the data is decorrelated by rotating

the basis, and scaled to unit variance. Accordingly, the classical Mahalanobis distance considers

the distribution of the data by measuring distance in standard deviations along the principal

components of the present data.
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Additionally, in contrast to only rotating and scaling the data in order to adapt to its distribution

assuming Gaussian distributions, generalized Mahalanobis metrics can exploit additional a priori

information regarding similarity and dissimilarity between individual samples before computing

distance (section 3.1.6). The objective of those supervised approaches is to learn a Mahalanobis

metric based on a transformation matrix M that takes into account both, the distribution of

the data and known similarity and dissimilarity constraints. The LMNN algorithm proposed by

[377] learns such a generalized Mahalanobis metric as described in the following and is especially

intended for neighborhood-based classification algorithms. Due to its intuitive approach and

successful application in other domains, the LMNN algorithm is employed in this work.

In the following, the Euclidean distance is considered as baseline metric for computing simil-

arity. As initially discussed in section 5.3.2, prerequisite to allow for applying Minkowski metric

and also for applying linear transformation to the data are all attributes in the attribute space

having equal quantitative data type and being normalization to the closed unit interval [0, 1].

Additionally, linear transformation cannot be applied to vectors with missing values. Con-

sequently, the metric learning strategy can only be applied to the version of X̃
p
train in which

all missing patient attributes were imputed as described in section 4.4.2 and missing therapy

attributes were complemented with zeros.

Comparable to the proposed RBA algorithm, a transformation matrix L is learned for each

outer cross-validation loop using the entire training sets X̃
p
train. The overall intention of the

LMNN algorithm is to learn a global transformation L such that it causes a target consultation

representation x̃j to be surrounded by consultations of the same class while being separated

from consultations of different classes. To do so, the objective function to be minimized, i.e.

the loss function (equation 5.9), is composed of two competing objectives ǫpull and ǫpush. Its

relative impact is controlled using a meta parameter ν ∈ [0, 1] which is to be tuned in the

inner cross-validation loops. Firstly, for each target consultation representation x̃j , the KLMNN

nearest neighbors with the same class, denoted as target neighbors, should be close. Therefore,

large average distances between x̃j and the KLMNN closest consultations x̃k labeled as similar

are penalized. Here, the binary matrix η indicates whether x̃k is a target neighbor of x̃j

ǫpull(L) =
∑

j,k

ηjk||L(x̃j − x̃k)||2. (5.7)

Secondly, small distances between x̃j and consultations labeled as dissimilar and which invade the

perimeter established by the target neighbors, denoted as impostors, are penalized. To increase

the robustness of the underlying KNN classification and to cope with noise in the training data,

an additional unit margin is added around the KNN decision boundaries, i.e. the perimeters

established by the target neighbors. The hinge loss [z]+ = max(z, 0) ensures not all samples

with different label but only impostors to contribute to the loss function. The binary matrix y0

indicates whether labels in ỹj and ỹk match.

ǫpush(L) =
∑

j,k,l

ηjk(1 − y0
jl)[1 + ||L(x̃j − x̃k)||2 − ||L(x̃j − x̃l)||2]+ (5.8)
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By minimizing the combined loss function

ǫ(L) = (1 − ν)ǫpull(L) + νǫpush(L) (5.9)

a transformation is learned which pulls the KLMNN target neighbors towards x̃j and pushes

impostors outside the KNN decision boundaries plus unit margin.

The required optimization of equation 5.9 can be formulated as a Semidefinite Program [377],

i.e. a linear program with positive semidefinite matrix. As Semidefinite Programs are con-

vex, the global minimum can be efficiently computed. The transformed Euclidean distances

in equation 5.9 is replaced by equation 5.10 with the additional constraint of M to only have

non-negative eigenvalues. Suchlike, a well-defined pseudometric can be learned. For each pair of

differently labeled inputs the non-linear hinge loss is replaced by a slack variable ǫjkl. Finally,

the resulting semidefinite program is defined by the conditions

min
M

∑

j,k

ηjk(x̃j − x̃k)T M(x̃j − x̃k) + ν
∑

j,k

ηjk(1 − y0
jl)ǫjkl (5.10)

Subject to:

1. (x̃j − x̃l)T M(x̃j − x̃l) − (x̃j − x̃k)T M(x̃j − x̃k) ≥ 1 − ǫjkl

2. ǫjkl ≥ 0

3. M < 0

Comparable to the above described RBA, the LMNN algorithm proposed by [377] assumes a

supervised classification problem where each sample is associated with one class label which

corresponds to a distinct ground truth. However, as also described above, in the context of

the therapy RS problem, each consultation is characterized by observed ground truth, which is

quantified as numeric outcome indicators for applied therapies, and unobserved ground truth,

which are all therapy options which have not been applied. Assumptions concerning similarity

or dissimilarity between pairs of consultations can only be derived from samples with commonly

applied therapies and with known outcomes, which yields the three groups of relationship de-

scribed above: similar consultations (1), dissimilar consultations (2), and consultations for which

no information on similarity is given (3).

As stated above, in the context of the RBA algorithm, target neighbors are the KLMNN closest

observations to a target observation which are considered to be similar, whereas impostors are

too close observations which are considered to be dissimilar. Applying the three groups described

above, target neighbors are the KLMNN closest consultations associated with equal therapy and

similar response, whereas impostors are consultation representations invading the neighborhood

defined by the target neighbors which are labeled with equal therapy but differing outcome.

Equally to the RBA definition, treatment responses are divided into good and bad outcome

classes by applying the predefined affinity threshold thrgood = 0.5. All consultations which are

labeled with different therapy options compared to the target consultation x̃j are not included
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into the respective cost definition as they hold no information regarding the relationship between

x̃j and these consultations.

Figure 5.10 illustrates an exemplary neighborhood of a target patient x̃j with good outcome

where all KLMNN = 3 target neighbors (green), i.e. neighboring consultations with equal polar-

ity, are supposed to be pulled towards x̃j . Consultation representations with differing polarity,

i.e. bad outcome, which invade the neighborhood defined by the target neighbors are considered

as impostors (red) and are supposed to be pushed outside the KNN decision boundaries plus

unit margin. Consultation k = 54 (white) is associated with a different therapy options and

hence is discarded.

Figure 5.10: The LMNN algorithm assumes a supervised classification problem. Consultations
are labeled with respect to a target consultation j and a priori similarity and
dissimilarity assumptions as introduced in section 5.3.2.1. The LMNN algorithm
intents to cause the target consultation x̃j to be surrounded by samples of the same
class while being separated from samples of different classes. [133]

5.4 Sparse Linear Model (SLIM)

In both, the conventional (section 5.3.1) and the patient-data CF approach (section 5.3.2), one

target patient specific linear model is applied to predict outcome for all treatment options.

Outcome observed in neighboring consultations are considered as independent variables and the

similarities between consultations are model coefficients. Consultations are either represented

by outcome observed for previous treatments only or by additional incorporation of patient

data, respectively. However, as already discussed, these models are subject to some limitations.

Firstly, the reliability of the model coefficients derived from heuristic similarity measures highly

depend on the included attributes and the available data. Secondly, interdependencies among

patients and therapies remain untapped and only sub-optimal solutions regarding the known

outcome are applied. Finally, the computational efficiency during runtime deteriorates with an

increasing number of consultations included in the database.

To overcome those limitations, the application of a linear regression model inspired by the

SLIM [246] outlined in section 3.2.2.2 is modified for therapy recommendation. In contrast to
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all previously studied methods which use patient-specific models, an item-based approach is

implemented in the following. For the present therapy recommendation application this means

that an individual model is learned for each treatment option.

In case of the proposed SLIM implementation, a therapy specific weight vector wm is employed

to model outcome yn
m of treatment m and test consultation n as

ŷn
m = x̃n T

testwm (5.11)

In accordance with section 3.2.2.2, for each treatment option an independent objective function

can be formulated

L(wm) =
1

2
||ym − X̃trainwm||22 +

β

2
||wm||22 + λ||wm||1 (5.12)

which is to be minimized. By utilizing all columns in X̃train as independent variables, outcome

information and additional side information are included into the linear model. However, in

contrast to the methods proposed in [247], this side information is associated with users instead

of items. Furthermore, compared to the original approach, each row of Ỹtrain only contains

observed outcome regarding one therapy option. Like this, dependencies concerning the temporal

sequence of applied therapies are maintained in contrast to the SLIM algorithm, however, on

the expense of only little training data.

The model hyperparameters, namely the L1 and L2 regularization weights β and λ, need to be

optimized in the inner cross-validation loop. Furthermore, as it is the case in the previously

described metric learning approach, the various scales of the patient describing attributes require

normalization and the application of complete consultation representation matrices X̃train and

X̃test for training and testing. Accordingly, all missing patient attributes were imputed as

described in section 4.4.2, missing therapy attributes were complemented with zeros, and all

attributes are min-max-normalized.

Finally, as for the neighborhood-based CF approaches, for each test consultation in X̃test the

accuracy of the predicted outcome is evaluated by calculating the RMSE between predicted

and actually observed outcome in Ỹtest. In the subsequent recommendation step, the affinity

scores predicted by each of the regression models are ranked. The top-3 ranked entries are

recommended and evaluated by computing the MAP at position 3.

Compared to the neighborhood-based approaches, the proposed algorithm is capable of ad-

apting to the underlying data by finding an optimal solution to model the observed outcome.

This approach has the potential to reveal patterns in the data and to achieve superior results.

Moreover, the linear coefficients for each model can reveal insights into the importance of respect-

ive attributes. Especially, attribute selection, inherent to the elastic net regularization, and the

additional requirement for solutions to satisfy wm ≥ 0 facilitates interpretability. As the range of

all attributes are rescaled to the same range, the obtained coefficients can be directly associated

with the average importance of the respective attributes. Moreover, by multiplying the weights

with the actual attribute values, more detailed analyses concerning the individual attributes’

contribution to the prediction can be provided. However, SLIM highly depends on sufficient
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training data for each therapy option. When incorporating too few training consultations, the

learned model is hardly capable of generalizing unseen data.

5.5 Gradient-boosted Regression Trees (GBM)

The proposed SLIM algorithm intends to find optimal coefficients to model the observed feed-

back on an item. Therefore, a linear relationship is assumed between the feedback observed on

other items and additional side information included into the model. This assumption, however,

is not always valid.

As introduced in section 3.3, there exist a variety of further supervised regression and classi-

fication algorithms which learn functions to map input vectors x to quantitative or qualitative

target values such as the observed feedback. One of the most popular and successfully applied

machine learning algorithms, especially for classification tasks, are DTs. However, DTs can

be also capable of learning regression models as introduced in section 3.3. As they are non-

parametric, no assumptions on the relation between dependent and independent variables are

made and good classification and regression accuracies can be achieved with comparably little

training data by revealing even non-linear relationships.

Beyond that, DT induction and classification algorithms such as C4.5 and Classification and

Regression Tree (CART) are capable of handling quantitative and qualitative data types as they

are present in the data at hand. Both algorithms can also cope with missing values to a certain

extent. Additionally, embedded attribute selection makes them comparably robust to large at-

tribute spaces containing irrelevant attributes. However, as pointed out in section 3.2.2.3, one

main issue related to DTs is their lacking generalization capability. To overcome this problem

and yield an universally powerful model, in this work a Gradient Boosting Machine (GBM) en-

semble strategy, namely Regularized Gradient Boosting, is employed. This method is supposed

to be superior to other ensemble approaches concerning accuracy and generalization capability

especially at the presence of a limited data foundation. A popular and very efficient GBM im-

plementation providing state-of-the-art results is the XGBoost implementation1 which is utilized

in the following.

As it is the case with the aforementioned SLIM algorithm, an item-based approach is imple-

mented. For each treatment option a boosted regression tree ensemble is provided as outcome

prediction model. As objective function to be minimized, the squared error (section F.1.6), is

applied. Comparable to the above linear model approach, the subsets of training consultation

representations in X̃train, which are associated with the individual therapy options, are used

as model input and the respective treatment response in Ỹtrain as ground truth label. Even

thought DTs and the applied GBM are capable of coping with missing values, the complete and

min-max-normalized version of X̃ is utilized for the sake of comparability.

In order to prevent overfitting in spite of the small data foundation, the base learner are trained

on a subsample of the training data only in each iteration. Here, subsampling 80 % of all training

data has shown best results in preliminary experiments. Also learning rate µ = 0.001 and the

1https://xgboost.readthedocs.io
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L1 and L2 regularization weights β = 0.01 and λ = 0.01 are defined based on own preliminary

studies. Number of trees to fit ntrees, maximum base learner tree depth dmax, and the minimum

sum of instance weights wchild, which is needed in a node before stopping further partitioning,

are determined by a grid search in the inner cross-validation loop. Especially dmax and wchild are

essential to prevent overfitting problems. The remaining parameters are left on default values.

Also in case of the GBM approach, prediction accuracy (RMSE) is evaluated for each of the

models individually. A recommendation list, which is evaluated in terms of MAP@3, is generated

by ranking the individual model outputs according to their outcome predictions. Comparable

to RBA and SLIM, also the regression tree ensemble model is capable of providing insights

into attribute importance. Beyond that, as introduced in section F.1.7, local or global surrogate

models can supplement interpretability. Suitable surrogate models are linear models, comparable

to SLIM, or DTs which can be easily translated into interpretable rule sets.

5.6 Evidence-based and Expert-based Exclusion Rules

As already pointed out in chapter 1 and section 5.1, reducing the potential of generating inappro-

priate or even harmful recommendations plays a crucial role regarding trust and acceptance of

CDSSs. In contrast to other domains of RSs, e.g. e-commerce applications, in the area of health

and medicine, failures in recommendations accompany high risks. Particularly at the presence

of small training databases it can be assumed that patterns, which would exclude inappropriate

treatments from the top-3 recommendation list, can remain unrevealed. Therefore, to increase

confidence and minimize risk that emanates from automatically generated data-based therapy

recommendations, a rule-based post-filtering layer is implemented. Post-filtering is one possible

strategy to incorporate context, such as time or place, a user interacts with a recommender

system, into the recommendation process [2]. In contrast to pre-filtering, which only considers

users or item according to the current context for the recommendation generation, post-filtering

modifies the resulting recommendation list based on contextual information. Here, treatment

options, which are recommended by the RS algorithm though are ruled out due to an exclusion

criterion, are simply removed from the recommendation list. This results in other therapies

moving into the top-3 list.

Basically, three groups of rules can be distinguished which are derived from the current S3-

Guidelines on the treatment of Psoriasis vulgaris [240] and additional specifications provided by

advising clinicians from the Clinic and Polyclinic for Dermatology, University Hospital Dresden.

(1) Absolute contraindications due to comorbidities or the current life situation as described in

the S3-Guidelines [240] and listed in section 4.3, (2) Psoriasis type specific exclusion criteria, and

(3) recommendations regarding the sequence of applied therapies derived from the S3-Guidelines

[240] or specified by the advising clinicians. The grouped rules are summarized in table 5.1. Ad-

ditionally to the stated rules, (4) the requirement not to recommend treatments which have been

applied and discontinued before was requested by the clinical experts. The integration of rule

sets derived from the S3-Guidelines can be regarded as the incorporation of external evidence

within the framework of EbM.
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Table 5.1: Exclusion rules based on external evidence and specification by clinical experts.

Condition Exclusion

(1) Absolute contraindications

Arterial hypertension Cyclosporine

Renal dysfunction Acitretin, Cyclosporine,

Fumaric acid esters, Methotrexate

Hepatic dysfunction Fumaric acid esters,

Methotrexate

Gastrointestinal disease Fumaric acid esters

Malignancies Cyclosporine,

Biopharmaceuticals

Tuberculosis or other severe infections Cyclosporine, Methotrexate,

Biopharmaceuticals,

Planned child Actitretin, Methotrexate

Pregnancy, breastfeeding Actitretin, Apremilast,

Methotrexate, Sekukinumab

(2) Psoriasis types specific

Psoriasis arthritis only Acitretin, Cyclosporine,

Fumaric acid esters, UV therapy

No Psoriasis arthritis Golimumab

(3) Sequence of therapies

Not any first-line conventional Second-line conventional pharmaceuticals,

pharmaceuticals applied First-line biopharmaceuticals,

Second-line biopharmaceuticals

Not all first-line conventional Second-line biopharmaceuticals

pharmaceuticals applied

All rule sets are implemented suchlike that they can be applied individually. Three strategies

are studied and compared within this work:

a Exclusion of therapies which are contraindicated and due to Psoriasis type, i.e. rule sets

(1) and (2).

b Exclusion of therapies as in (a) and due to sequence of therapies, i.e. rule set (3).

c Exclusion of therapies as in (b) and exclusion of therapies already applied in a patients

therapy history (4).
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In the following chapter, the performance of the various therapy recommendation algorithms and

variations introduced in chapter 5 are compared. In section 6.1, results from model selection, i.e.

the inner cross-validation loop, are contrasted and discussed for each of the proposed methods

and the best model for each approach is selected. In section 6.2, generalization performance

estimates, yielded in the outer cross-validation loop, are compared and discussed. Finally, in

section 6.3, the recommendation performance is compared with human experts.

6.1 Model Selection

6.1.1 Collaborative Filtering

6.1.1.1 Conventional Collaborative Recommender (CF)

In the following, for all proposed approaches, mean values and standard deviations of the in-

ner cross validation results (i.e. average over all 5 folds) for each of the discussed scores are

shown. Figure 6.1 (a) and (b) demonstrate outcome prediction accuracy (RMSE) and the

agreement between the top-3 ranked recommendations and the attending physician’s successful

choice (MAP@3) of the conventional CF approach (CF) as described in section 5.3.1. Addition-

ally, figure 6.2 (a) shows the ratio of test consultations for which RMSE could be computed, i.e.

for which predictions overlap with the actually applied treatment, and figure 6.2 (b) shows the

ratio of treatment options appearing in the recommendation list, i.e. coverage.

Two baseline approaches are discussed and compared with the algorithms’ results. Firstly, the

average affinity scores for each treatment are computed as outcome prediction baseline (aver-

age efficiency). Ranking those predictions according to outcome provides one recommendation

baseline. Secondly, the individual therapies’ frequency of application in the training partitions

(overall popularity) are employed as second recommendation baseline. As can be seen in fig-

ure 6.1 (a), exploiting a selected neighborhood to derive outcome predictions from is clearly

superior to utilizing only the average affinity scores. Also, the ranked list of recommendations

derived from the conventional CF predictions achieves significantly higher MAP@3 scores than

those based on averages only. Nevertheless, as demonstrated in figure 6.1 (b), ranking based on

the treatment options’ average outcome is still superior to only recommending treatments based

on the application frequency.

When comparing the group of correlation-based similarity measures Cosine similarity and

Pearson correlation coefficient with the Minkowski metrics, clearly distinctive results are yiel-

ded. Outcome prediction of the conventional CF using Cosine similarity or Pearson correlation
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coefficient as similarity measure is overall inferior to algorithms using Manhatten or Euclidean

distance. Regarding the ability to rank the actually applied and successful therapy among the

top-3 options, however, Cosine similarity and Pearson correlation outperform the Minkowski

metrics clearly for a wide range of K. On the one hand, as can be seen in figure 6.2 (b), Cosine

similarity and Pearson correlation are capable of retrieving already at very small neighborhood

sizes a large ratio of consultations with high degree of overlap with the actually applied treat-

ment. Simultaneously, coverage (figure 6.2 (a)) is comparably low, meaning that the retrieved

neighboring consultations are very accurate with respect to the applied treatments and hence

introduce only little noise into the recommendation. Both results in high MAP@3 values already

for small neighborhoods which only slowly deteriorates with rising K. Yet, the neighboring con-

sultations only allow for comparably bad outcome prediction. The Minkowski metrics, on the

other hand, facilitate much better RMSE values which, however, is based on only few overlapping

therapies between prediction and ground truth, at least for small K. Also coverage is already for

small K rather large which overall yields inaccurate recommendations and low quality therapy

ranking.

One major difference between the two groups of similarity measures is how missing entries,

i.e. treatments which have not been applied in both consultation representations, are treated.

Cosine similarity and Pearson correlation coefficient assesses the orientation of two vector rep-

resentations without taking the magnitude of the vectors into account. To do so, both similarity

measures scale the consultation vectors to unit length before calculating the dot product. Hence,

similarity is increased for co-occurring treatments but is penalized by each applied treatment in

either of the two consulting vectors which do not overlap. In contrast, the Minkowski metrics

consider magnitude when computing the distance between two vectors and no normalization is

applied. In the present application, only co-occurring treatment applications are included into

the distance computation. Thus, all dimensions with missing entries in either of the vectors

are simply ignored. Hence, Cosine similarity and Pearson correlation coefficient incorporate

more information when comparing consultation representations which explains the more select-

ive recommendation list. Nevertheless, to derive accurate outcome predictions it is obviously

more important to observe very similar outcome on co-occurring treatments than to have overall

similar vectors regarding the number of applied therapies.

Within the two groups of similarity measures there are only minor differences regarding pre-

diction and recommendation performance. Pearson correlation, which is simply the Cosine

similarity after deducting the mean of affinity scores of a consultation representation vector,

performs slightly better for rising K concerning both, outcome prediction and therapy recom-

mendation. The same is true for Euclidean distance compared with the Manhatten distance.

This observation can be explained with the fact that with rising order p of the Minkowski metric

the impact of larger differences between dimensions on the overall distance rises. Consequently,

consultation representations containing larger affinity differences for treatments become more

distant for Euclidean distance (p = 2) compared with Manhatten distance (p = 1).

As specified in 1, the primary evaluation criterion of this work is the accuracy of outcome

predictions. However, as additional criterion the ratio of neighbors overlapping the actually
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Figure 6.1: CF: (a) RMSE between estimated and observed outcome and (b) MAP@3 evaluat-

ing the ranked list of recommended therapies. The similarity and distance measures
Cosine similarity ( ), Pearson correlation ( ), Manhatten distance ( ) and
Euclidean distance ( ) are compared. Additionally, outcome prediction and treat-
ment recommendation based on average efficiency, i.e. affinity score of each treat-
ment option averaged over all training consultations ( ), and overall popularity,
i.e. frequency of application in the training consultations ( ), are shown. RMSE
and MAP@3 are computed for a neighborhood size range K ∈ [1, 250].
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Figure 6.2: CF: (a) Coverage of available treatment options and (b) ratio of neighbors over-
lapping the actually applied therapy. The similarity and distance measures Cosine
similarity ( ), Pearson correlation ( ), Manhatten distance ( ) and Euclidean
distance ( ) are compared. Coverage and overlap are computed for a neighborhood
size range K ∈ [1, 250].
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applied therapy is defined to exceed overlap ≥ 0.95 in order to base the selection on reliable val-

ues. Table 6.1 summarizes the selected K for all proposed conventional CF approaches together

with the corresponding evaluation metrics. Additionally, the baseline results are demonstrated.

For the correlation-based similarity measures, the selected neighborhood size K is considerably

smaller than those of the Minkowski metrics due to a much larger ratio of neighbors overlapping

the actually applied therapy (overlap) already for small K.

Table 6.1: CF: Inner cross-validation results (5-fold cross-validation). Best K for which RMSE is
minimal and the overlap ≥ 0.95 criterion is met. Additionally, average and standard
deviation of the evaluation metrics RMSE, MAP@3, coverage and overlap are shown.

Metric K RMSE MAP@3 Coverage Overlap

CF (Cosine) 23.98 (3.20) 0.17 (0.00) 0.87 (0.01) 0.55 (0.02) 0.95 (0.00)

CF (Pearson) 27.91 (3.00) 0.17 (0.00) 0.87 (0.01) 0.56 (0.02) 0.95 (0.00)

CF (Manhatten) 85.50 (5.45) 0.14 (0.00) 0.59 (0.01) 0.94 (0.01) 0.96 (0.00)

CF (Euclidean) 89.23 (6.14) 0.14 (0.00) 0.60 (0.01) 0.94 (0.01) 0.95 (0.00)

Average efficiency - (-) 0.29 (0.00) 0.30 (0.02) 1.00 (0.00) 1.00 (0.00)

Overall popularity - (-) 0.46 (0.00) 0.20 (0.00) 1.00 (0.00) 1.00 (0.00)

In a preliminary experiment, also the performance of an implicit version of the conventional

CF algorithm was studied. Instead of utilizing affinity scores to represent consultations, the

binary information whether treatments have been previously applied to a patient are utilized to

compare consultations. Independent of the applied similarity or distance measure, this approach

has shown to be inferior to the explicit CF. The straightforward interpretation is that the

information stored in the affinity scores is of essential value for consultation comparison. This

observation substantiates the hypothesis that there exist patterns in treatment outcome which

can serve as information source for personalized treatment recommendations.

6.1.1.2 Patient-data Collaborative Recommender (DR)

As introduced in section 5.3.2, the patient-data CF approach (DR) compares consultations

represented by both, treatment history and available patient data. Hence, a much wider range

of attributes with distinct properties are incorporated into the similarity computation. Two

measures for computing similarity between consultation representations, Euclidean distance and

Gower similarity, are compared.

As can be seen in table 6.2 and figure 6.3 (a), also outcome prediction accuracy of both

patient-data CF versions clearly outperform the RMSE baseline, i.e. the average efficiency. The

RMSEs of both approaches are small for small K and becomes larger with rising neighborhood

size. The quality of the top-3 list of recommendations, shown in figure 6.3 (b), is also capable of

achieving better results than by only recommending the overall most popular or most efficient

treatments. However, MAP@3 shows a clear maximum for a rather small neighborhood size

which quickly deteriorates with rising K and asymptotically approaches the baselines. The

characteristic of both evaluation measures can be interpreted suchlike that there obviously is
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Figure 6.3: DR: (a) RMSE between estimated and observed outcome and (b) MAP@3 evaluating

the ranked list of recommended therapies. The similarity and distance measures
Euclidean distance ( ) and Gower similarity ( ) are compared. Additionally,
outcome prediction and treatment recommendation based on average efficiency, i.e.
affinity score of each treatment option averaged over all training consultations ( ),
and overall popularity, i.e. frequency of application in the training consultations
( ), are shown. RMSE and MAP@3 are computed for a neighborhood size range
K ∈ [1, 250].
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Figure 6.4: DR: (a) Coverage of available treatment options and (b) ratio of neighbors overlap-
ping the actually applied therapy. The similarity and distance measures Euclidean
distance ( ) and Gower similarity ( ) are compared. Coverage and overlap are
computed for a neighborhood size range K ∈ [1, 250].
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an optimal neighborhood size. For too small K, the included data is insufficient. For rising

neighborhood sizes, the range of treatment options rises and hence noise and inappropriate

information is increasingly included.

When comparing Euclidean distance with Gower similarity to compute similarity between con-

sultations, only outcome prediction performance (RMSE) shows noteworthy differences. Gower

similarity outperforms Euclidean distance which indicates that considering scale of measure-

ment, i.e. data type, is obviously beneficial when comparing attributes. As shown in figure 6.4

(a) and (b), the behavior of coverage and overlap of both patient-data CF approaches is similar

to the correlation-based conventional CF. Both patient-data CF approaches are capable of re-

trieving already at very small neighborhood sizes a large ratio of consultations with high degree

of overlap with the actually applied treatment to compute RMSE from. Yet, the neighboring

consultations only allow for comparably bad outcome predictions. Coverage, on the other hand,

is comparably low and only slowly rises with increasing K. Hence, the retrieved neighboring

consultations are very selective regarding treatment options and introduce only little noise into

the recommendation which results in high MAP@3 values already for small K. However, as

stated in 1, primary evaluation criterion is high prediction accuracy as foundation for recom-

mending the potentially best treatment option which is not identical to high agreement with the

physician’s recommendation.

The identified best K listed in table 6.2 minimizes RMSE with respect to the overlap ≥ 0.95

criterion. However, as can be seen in figure 6.3 (b), the ratio of the top-3 recommendations

which agree with the attending physician’s successful recommendations is larger for smaller K

than the point where the overlap criterion is met. Consequently, mean MAP@3 of the selected K

does not exceed 0.54, respectively. Even though the difference is rather small, Gower similarity

performs slightly better than Euclidean distance in terms of outcome prediction and is preferred

in the following.

Table 6.2: DR: Inner cross-validation results (5-fold cross-validation). Best K for which RMSE is
minimal and the overlap ≥ 0.95 criterion is met. Additionally, average and standard
deviation of the evaluation metrics RMSE, MAP@3, coverage and overlap are shown.

Metric K RMSE MAP@3 Coverage Overlap

DR (Gower) 29.98 (9.51) 0.19 (0.00) 0.54 (0.03) 0.69 (0.04) 0.96 (0.01)

DR (Euclidean) 38.54 (15.63) 0.20 (0.00) 0.54 (0.05) 0.66 (0.07) 0.97 (0.02)

Average efficiency - (-) 0.29 (0.00) 0.30 (0.02) 1.00 (0.00) 1.00 (0.00)

Overall popularity - (-) - (-) 0.20 (0.00) 1.00 (0.00) 1.00 (0.00)

6.1.1.3 Missing Value Imputation (DR-Impute)

As stated in chapter 4, the available data is characterized by numerous missing values. The

above described patient-data CF utilizes completely imputed versions of treatment history and

patient data (impute 2 ). As imputing missing values underlies the risk of introducing noise and

corrupted data, the impact of sparsity on the outcome prediction and therapy recommendation
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is studied. Due to the inherent capability of handling missing values and the slightly superior

performance compared with the Euclidean approach, the Gower similarity approach, described

in section 6.1.1.2, is compared for all three imputation stages summarized in table 4.4.

Figure 6.5 (a) demonstrates the affinity prediction superiority of less incomplete consultation

representations over sparse representations which becomes particularly apparent with rising

neighborhood sizes. The dataset with reduced number of missing values (impute 1 ) in turn

shows similar results as the complete consultation representations (impute 2 ). At the selected

K, shown in table 6.3, however, no RMSE differences are evident between the three data sets.

Also concerning the capability to rank the successful physician’s choice among the top-3 recom-

mendations, utilizing the consultation representations with reduced number of missing values

(impute 1 ) shows almost equal results as the complete version (impute 2 ). Interestingly, the

ranked therapy recommendation list shows largest overlap with the physician’s choice for the

entire studied interval of K when using consultation representations without any data imputa-

tion (impute 0 ). This is also true for the selected neighborhood size K shown in table 6.3.

As it is the case for MAP@3, also coverage and overlap do not differ greatly from the above

described patient-data CF when comparing the use of the data versions impute 1 and impute

2. Again, only the raw consultation representations (impute 0 ) yields deviating results. Cover-

age, shown in figure 6.6 (b), is overall slightly larger when using the raw data and hence more

treatment options are included into the recommendation list. Also overlap is already larger for

smaller K with raw consultation representations with missing values, which reflects the better

MAP@3 results.

Table 6.3: DR-Impute: Inner cross-validation results (5-fold cross-validation). Best K for which
RMSE is minimal and the overlap ≥ 0.95 criterion is met. Additionally, average and
standard deviation of the evaluation metrics RMSE, MAP@3, coverage and overlap
are shown.

Metric K RMSE MAP@3 Coverage Overlap

DR-Impute 0 (Gower) 29.43 (7.97) 0.19 (0.00) 0.61 (0.05) 0.70 (0.06) 0.98 (0.01)

DR-Impute 1 (Gower) 33.18 (14.95) 0.19 (0.00) 0.55 (0.05) 0.70 (0.06) 0.97 (0.01)

DR-Impute 2 (Gower) 29.98 (9.51) 0.19 (0.00) 0.54 (0.03) 0.69 (0.04) 0.96 (0.01)

Average efficiency - (-) 0.29 (0.00) 0.30 (0.02) 1.00 (0.00) 1.00 (0.00)

Overall popularity - (-) - (-) 0.20 (0.00) 1.00 (0.00) 1.00 (0.00)

Besides the curse of dimensionality and the problems associated with attribute relevancy and

redundancy referred to above, missing values arise additional issues concerning the similarity

measure. At the presence of missing values, vectors with differing dimensions are compared. In

case of the conventional CF described in section 6.1.1.1, missing treatments in the consultation

representation vectors can be assumed to be NMAR and hence carry information which is

reflected in the computed similarities. In contrast, most missing values in the patient data

are considered to be MCAR or MAR. This requires partly uncertain assumptions regarding

the imputation strategy and renders comparability of the resulting coefficients difficult and

unreliable.
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Figure 6.5: DR-Impute: (a) RMSE between estimated and observed outcome and (b) MAP@3
evaluating the ranked list of recommended therapies. Gower similarity is compared
for the three imputation stages impute 0 ( ), impute 1 ( ), and impute 2 ( ).
Additionally, outcome prediction and treatment recommendation based on average
efficiency, i.e. affinity score of each treatment option averaged over all training con-
sultations ( ), and overall popularity, i.e. frequency of application in the training
consultations ( ), are shown. RMSE and MAP@3 are computed for a neighbor-
hood size range K ∈ [1, 250].
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Figure 6.6: DR-Impute: (a) Coverage of available treatment options and (b) ratio of neighbors
overlapping the actually applied therapy. Gower similarity is compared for the three
imputation states impute 0 ( ), impute 1 ( ), and impute 2 ( ). Coverage and
overlap are computed for a neighborhood size range K ∈ [1, 250].
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To conclude, no general superiority of data imputation over dealing with incomplete vectors

could be shown. According to the RMSE curve, the imputation strategies are particularly valid

with regard to the task of predicting outcomes.

6.1.1.4 Exclusion Rules (DR-Rules)

As introduced in section 5.6, rule sets are implemented in order to integrate literature-based

evidence (S3-Guideline [240]) and further local expert recommendations concerning the treat-

ment of Psoriasis vulgaris. A post-filtering layer truncates the ranked lists of treatment options

according to those rules by excluding presumably inappropriate treatments. In the following,

the impact of exclusion rules on the patient-data CF recommendation list is studied. Three

combinations of rule sets are compared which differ in the extend to which treatment options

are excluded as specified in section 5.6.
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Figure 6.7: DR-Rules: (a) MAP@3 evaluating the ranked list of recommended therapies and (b)
coverage of available treatment options. Application of no exclusion rules ( ) is
compared with exclusion rule sets rules a ( ), rules b ( ), and rules c ( ) as
described in section 5.6. MAP@3 and coverage is computed for a neighborhood size
range K ∈ [1, 250].

As can be seen in figure 6.7 (a) and table 6.4, only excluding treatments which are contraindic-

ated and due to the diagnosed Psoriasis type (rules a) has only minor impact on the algorithm’s

ability to rank the actually applied therapy among the top-3 options. Coverage, however, is

clearly decreased as shown in figure 6.7 (b). This observation indicates that the patient-data

CF algorithm is apparently capable of including those aspects when ranking treatments and the

underlying data represents these rules.

Applying rule set rules b, which additionally excludes therapies due to the sequence of ap-

plied therapies, distinctly impacts the MAP@3 value negatively. Also coverage for the selected

neighborhood size K is considerably reduced by additional 11% compared with rules a. This ob-
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servation can be explained with a ground truth not being compliant with the demanded sequence

of treatment application. The underlying data foundation either is incomplete or erroneous, or

the attending physician was himself not complying with the required treatment sequence.

Additionally excluding treatment options already applied before but aborted, i.e. applying rules

c, only deteriorates the overall recommendation quality marginally even though coverage is fur-

ther reduced. This small additional MAP@3 deterioration can also be explained with a rule that

is not always represented in the ground truth. Nevertheless, as it is already the case for rules a,

the substantial decrease in coverage compared to small MAP@3 deterioration can be linked to

exclusion of treatment options which are only rarely recommended by the attending physician.

Hence, it can be assumed that the underlying data, which represents the attending physician’s

recommendations, adhere to those rules.

To summarize, the results show that exclusion of therapies which are contraindicated and due

Table 6.4: DR-Rules: Inner cross-validation results (5-fold cross-validation). Best K for which
RMSE is minimal and the overlap ≥ 0.95 criterion is met. Additionally, average and
standard deviation of the evaluation metrics RMSE, MAP@3, coverage and overlap
are shown.

Metric K RMSE MAP@3 Coverage Overlap

No exclusion rules

DR (Gower) 29.98 (9.51) 0.19 (0.00) 0.54 (0.03) 0.69 (0.04) 0.96 (0.01)

With exclusion rules

DR-Rules a (Gower) 29.98 (9.51) 0.19 (0.00) 0.53 (0.03) 0.60 (0.04) 0.96 (0.01)

DR-Rules b (Gower) 29.98 (9.51) 0.19 (0.00) 0.43 (0.02) 0.49 (0.03) 0.96 (0.01)

DR-Rules c (Gower) 29.98 (9.51) 0.19 (0.00) 0.41 (0.01) 0.39 (0.02) 0.96 (0.01)

Average efficiency - (-) 0.29 (0.00) 0.30 (0.02) 1.00 (0.00) 1.00 (0.00)

Overall popularity - (-) - (-) 0.20 (0.00) 1.00 (0.00) 1.00 (0.00)

to Psoriasis type (rules a), but also exclusion of therapies already applied in a patients therapy

history (rules c) obviously comply with the underlying data. Exclusion of treatment options

which do not follow the sequence of therapies described in the S3-Guidelines and extended by

the advising clinicians, however, is not in accordance with the ground truth represented by the

attending physician’s choice.

6.1.1.5 Attribute Selection and Weighting (DR-RBA)

The proposed RBA approach, described in section 5.3.2.1, assigns weights wd to the individual

attributes d, which is equivalent to scaling attributes according to their individual importance.

In order to reduce the input space but also to address the above described problems with

irrelevant attributes distorting the similarity computation, only important attributes are to be

used for consultation comparison. For this purpose, only those attributes assigned with positive

weights are taken into account. Finally, Gower similarity is computed from the consultations

with weighted attributes. The free parameters, number of nearest hits and nearest misses KRBA

and neighborhood size K, are determined by means of a grid search within the inner cross-
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validation loop. The parameters are determined suchlike that RMSE is optimized respecting

the overlap ≥ 0.95 criterion. The initial attribute weight vector winit and the weight threshold

thrw for attribute selection are set to 0, resulting in important attributes to have positive weights

and negative attributes to be neglected. Concerning KRBA, the best RMSE could be constantly

found for KRBA = 15.

In figure 6.8 (a) and (b), the previously described Gower similarity patient-data CF is com-

pared with the weighted version. Scaling attributes is obviously very beneficial regarding out-

come prediction accuracy (RMSE) and quality of the list of top-3 ranked recommendations

(MAP@3). Even though especially in the surroundings of KRBA a clear minimum is evident,

the prediction error is reduced in total and also MAP@3 is overall increased. This overall im-

provement is also reflected in the finally selected model, summarized in table 6.5. The DR-RBA

approach outperforms the unweighted version for an even smaller neighborhood. Nevertheless,

whereas overlap remains essentially unchanged, coverage is generally larger and the recommender

hence tends to be less selective. For the chosen neighborhood size K, however, average coverage

is identical with 69 %.

Table 6.5: DR-RBA: Inner cross-validation results (5-fold cross-validation). Best K for which
RMSE is minimal and the overlap ≥ 0.95 criterion is met. Additionally, average and
standard deviation of the evaluation metrics RMSE, MAP@3, coverage and overlap
are shown.

Metric K RMSE MAP@3 Coverage Overlap

DR (Gower) 29.98 (9.51) 0.19 (0.00) 0.54 (0.03) 0.69 (0.04) 0.96 (0.01)

DR-RBA (Gower) 22.91 (5.28) 0.15 (0.00) 0.64 (0.03) 0.69 (0.04) 0.95 (0.00)

Average efficiency - (-) 0.29 (0.00) 0.30 (0.02) 1.00 (0.00) 1.00 (0.00)

Overall popularity - (-) - (-) 0.20 (0.00) 1.00 (0.00) 1.00 (0.00)

Firstly, the results clearly indicate that weighting and selecting attributes according to their

assumed importance can improve the prediction accuracy of a neighborhood-based CF approach.

The similarity measures underlying the algorithm become more meaningful concerning the given

task. Secondly, the results imply that the applied supervised method to learn attribute weights

is an appropriate choice and the similarity constraints prove to be justifiable. Nevertheless, it

must be kept in mind that redundancies between attributes are not addressed by this method.

The RBA does not detect correlations and learns similar weights for dependent attributes.

As described above, for each outer cross-validation iteration, i.e. test patient p, an individual

attribute weight vector w is learned using all other patients’ consultations as training data.

Considering all 181 iterations, on average the weights of 42.56 (26.77 %) attributes drop below

the determined threshold thrw = 0 and are neglected. Consequently, the attribute space is on

average reduced to 116.44 attributes. Figures 6.11, 6.12, and 6.13 present the attribute weights.

It is noticeable that the variance of the number of dropped values but also the weight values

themselves are comparably small for the individual attributes. This observation can be inter-

preted as a meaningful and reliable selection process.

When comparing patient data and previous treatment attributes, overall, the latter gain more
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Figure 6.8: DR-RBA: (a) RMSE between estimated and observed outcome and (b) MAP@3 eval-
uating the ranked list of recommended therapies. Gower similarity without ( )
and with ( ) applying attribute selection and weighting are compared. Addition-
ally, outcome prediction and treatment recommendation based on average efficiency,
i.e. affinity score of each treatment option averaged over all training consultations
( ), and overall popularity, i.e. frequency of application in the training consulta-
tions ( ), are shown. RMSE and MAP@3 are computed for a neighborhood size
range K ∈ [1, 250].
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Figure 6.9: DR-RBA: (a) Coverage of available treatment options and (b) ratio of neighbors
overlapping the actually applied therapy. Gower similarity without ( ) and with
( ) applying attribute selection and weighting are compared. Coverage and overlap
are computed for a neighborhood size range K ∈ [1, 250].
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weight. A straightforward interpretation, which agrees with the conventional CF results shown

in section 6.1.1.1, is that therapy history and previous treatment outcome bear crucial inform-

ation about a patient and potentially effective treatments. Here, especially ADEs, effectiveness

and the summarizing affinity score of previously applied systemic therapies are assigned large

values. ∆PASI and the actual attending physician’s recommendation, on the other hand, are

apparently less important. Here, a minor correlation of attribute weights with the frequency of

therapy application as shown in figures B.6, B.7 and B.8 is noticeable.

Concerning patient data, especially demographic information, diagnosis information, but also

PASI gain comparable large weights. More detailed, especially gender, age, planned child and

diagnosed Psoriasis arthritis and nail changes are considered to be important. But also family

diagnosis and the year of the first diagnosis, which can be seen as an indicator for the length of

time the patient is already under treatment, are assigned large weights. Furthermore, especially

the weights of some comorbidities such as arterial hypertension, metabolic and mental diseases

are particularly striking. Again, the observed weights, however, correlate with the overall oc-

currence of comorbidities in the data.

In order to evaluate the learned weights, six dermatologists rated the available attributes

concerning importance for treatment decisions. The five step ordinal rating scale ranges from

not important at all to absolutely essential. Spearman’s rank correlation coefficient is computed

among all experts and the RBA weights as shown in figure 6.10. In general, correlation between

experts and RBA weights are low. As can be expected, the largest correlation is shown for the

dermatologist providing the data (Expert 1 ). However, also among the experts correlation is

also only moderate in most cases.

Figure 6.10: Inter-rater agreement concerning importance of attributes for treatment decisions.
Estimated importance (RBA weights) and expert ratings are compared.
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6.1.1.6 Metric Learning (DR-LMNN)

Instead of only scaling attributes, the LMNN metric learning algorithm described in section 5.4

learns a transformation matrix L for each outer cross-validation iteration on the basis of the

training dataset. Euclidean distance is applied to the transformed data in order to compare

consultation representations. Two free parameters, additional to the CF neighborhood size K,

must be defined: the LMNN neighborhood size KLMNN , which determines the included target

neighbors and impostors, ν, which controls the impact of the competing objectives ǫpull and ǫpush,

and learning rate µ. The best hyperparameter configuration is determined in the inner cross-

validation loop (grid search) suchlike that RMSE is optimized respecting the overlap ≥ 0.95

criterion. Best results could be found for KLMNN = 10, ν = 0.5, and ν = 0.001 for the entire

range of evaluated K.

When comparing the RMSE curves of the Euclidean distance patient-data CF with and

without data transformation, the DR-LMNN clearly outperforms the basic approach. The error

between estimated and observed outcome quickly approaches a minimum of RMSE = 0.13,

which is the smallest inner cross-validation error observed for all studied patient-data CF ap-

proaches. RMSE only slowly rises with increasing K as can be seen in figure 6.14 (a). Overlap is,

as the version with consultations represented in the original attribute space, rather large already

for small K as shown in figure 6.15 (b). This results in a small neighborhood size K. Further-

more, a large ratio of overlapping treatments with the retrieved neighboring consultations which

coincides with small RMSE values is a clear indicator for a meaningful neighborhood. Also the

ranked list of treatment options benefits from metric learning. The patient-data CF approach

incorporating data transformation is superior to the basic approach not only regarding achiev-

able MAP@3 maximum but maintains a comparable high score for the entire studied range of

K. However, what can be observed in figure 6.15 (a), DR-LMNN coverage is exceeding the

basic Euclidean distance patient-data CF especially for rising K. Considering the large MAP@3

score, the patient-data CF algorithm applying data transformation is obviously including more

options into the recommendation list, however, is simultaneously capable of ranking those op-

tions in accordance with the attending physician’s successful choices. Also the scores yielded at

the selected neighborhood sizes K, which are summarized in table 6.6, confirm the superiority

of the metric learning approach. Particularly the MAP@3 score is the largest compared to all

methods according to the inner cross-validation loop results.

Table 6.6: DR-LMNN: Inner cross-validation results (5-fold cross-validation). Best K for which
RMSE is minimal and the overlap ≥ 0.95 criterion is met. Additionally, average and
standard deviation of the evaluation metrics RMSE, MAP@3, coverage and overlap
are shown.

Metric K RMSE MAP@3 Coverage Overlap

DR (Euclidean) 36.00 (7.75) 0.20 (0.00) 0.54 (0.04) 0.69 (0.04) 0.97 (0.01)

DR-LMNN (Euclidean) 25.09 (3.35) 0.14 (0.00) 0.70 (0.02) 0.64 (0.03) 0.96 (0.01)

Average efficiency - (-) 0.29 (0.00) 0.30 (0.02) 1.00 (0.00) 1.00 (0.00)

Overall popularity - (-) - (-) 0.20 (0.00) 1.00 (0.00) 1.00 (0.00)
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Gender
Weight

Size
Year of birth

Living in partnership
Planned child

Arterial hypertension
Cardiac insufficiency
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Diabetes mellitus type 2
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Figure 6.14: DR-LMNN: (a) RMSE between estimated and observed outcome and (b) MAP@3
evaluating the ranked list of recommended therapies. Euclidean distance without
( ) and with ( ) applying linear transformation to the data are compared.
Additionally, outcome prediction and treatment recommendation based on average
efficiency, i.e. affinity score of each treatment option averaged over all training
consultations ( ), and overall popularity, i.e. frequency of application in the
training consultations ( ), are shown. RMSE and MAP@3 are computed for a
neighborhood size range K ∈ [1, 250].
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Figure 6.15: DR-LMNN: (a) Coverage of available treatment options and (b) ratio of neighbors
overlapping the actually applied therapy. Euclidean distance without ( ) and
with ( ) applying linear transformation to the data are compared. Coverage and
overlap are computed for a neighborhood size range K ∈ [1, 250].
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Comparable to the RBA approach, metric learning apparently significantly improves both,

the prediction accuracy and ranking capability of a neighborhood-based CF. The similarity

measures underlying the algorithm become more meaningful and hence powerful selecting and

weighting the appropriate consultations. Furthermore, the assumptions regarding similarity,

which provide the ground truth for this demonstrated supervised learning methods, prove to be

valid.

6.1.2 Sparse Linear Model (SLIM)

In contrast to all previous methods, the linear regression model which is investigated in the

following can be considered an item-based approach which learns one distinct model for each

treatment option. In order to prevent overfitting by keeping the learned coefficients balanced

but also to reduce the overall size of the attribute space, an elastic net regularization approach is

applied as introduced in 5.4. The impact of the two regularization terms L1-norm and L2-norm

are controlled by the free parameters β and λ, respectively. As the case with the RBA and

LMNN approaches, those parameters are determined within this inner cross-validation loop.

The parameters found for each model are summarized in table 6.7.

As can be clearly seen in table 6.7, the performance concerning outcome prediction differs

among therapy models. On average, RMSE of the inner cross-validation loops is comparable with

the patient-data CF (DR). Nevertheless, some therapy models are capable of achieving clearly

superior results, such as the models of Etanercept, Infliximab, Adalimumab, or Ustekinumab.

Others, such as the Secukinumab and Fumaderm models, are distinctly inferior to all other

methods studied. Also average MAP@3 is in the same range as the patient-data CF even

after applying attribute weighting or transformation. A noteworthy feature is the always 100 %

coverage and overlap, as each model produces an outcome estimate for almost every input.

Table 6.7: SLIM: Inner cross-validation results (5-fold cross-validation). Best λ and β for which
RMSE on average is minimal for the 5-fold cross-validation, i.e. inner cross-validation
loop. Additionally, the average results and standard deviations of RMSE for each
therapy model and overall average RMSE and MAP@3 are shown.

Method λ (10−2) β (10−2) RMSE MAP@3

SLIM - (-) - (-) 0.18 (0.00) 0.68 (0.02)

Methotrexat 0.75 (0.00) 0.25 (0.00) 0.19 (0.01) - (-)

Fumaderm 0.47 (0.11) 0.53 (0.11) 0.22 (0.01) - (-)

Infliximab 0.34 (0.33) 0.15 (0.19) 0.16 (0.02) - (-)

Etanercept 0.75 (0.02) 0.25 (0.02) 0.15 (0.00) - (-)

Adalimumab 0.28 (0.28) 0.72 (0.28) 0.16 (0.01) - (-)

Ustekinumab 0.73 (0.07) 0.27 (0.07) 0.16 (0.00) - (-)

Secukinumab 0.74 (0.05) 0.26 (0.05) 0.23 (0.01) - (-)

MTX/Infliximab 0.20 (0.26) 0.54 (0.40) 0.19 (0.04) - (-)

Average efficiency - (-) - (-) 0.29 (0.00) 0.30 (0.02)

Overall popularity - (-) - (-) - (-) 0.20 (0.00)
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Considering the inner cross-validation results, learning coefficients directly from the data to

model outcome appears to be a promising strategy. Beyond accuracy and quality of the recom-

mendation list, it must be kept in mind that the actual outcome prediction and recommendation

process is significantly more effective when utilizing a model-based approach. Nonetheless, these

results must be treated with caution, as they are partly based on a very small database. This is

especially true e.g. for the MTX/Infliximab model. Here, each fold on average only comprises 6

observations, meaning that this model is trained and evaluated on 24 and 6 observations only,

respectively.

6.1.3 Gradient-boosted Regression Trees (GBM)

Comparable to the previous methods, the GBM studied in the following can be considered

an item-based approach which learns one distinct regression model for each treatment option.

As was already detailed in 5.5, many GBM hyperparameters are defined based on preliminary

investigations. The remaining free parameters, namely the number of trees to fit ntrees, the

maximum base learner tree depth dmax and the minimum sum of instance weights wchild, are

selected in the inner cross-validation loop. The parameters found for each model are summarized

in table 6.8.

Table 6.8: GBM: Inner cross-validation results (5-fold cross-validation). Best ntrees, dmax and
wchild for which RMSE on average is minimal for the 5-fold cross-validation, i.e.
inner cross-validation loop. Additionally, the average results and standard deviations
of RMSE for each therapy model and overall average RMSE and MAP@3 are shown.

Method ntrees dmax wchild RMSE MAP@3

GBM - (-) - (-) - (-) 0.14 (0.00) 0.40 (0.02)

Methotrexat 59.67 (12.18) 2.69 (1.30) 6.39 (0.94) 0.11 (0.01) - (-)

Fumaderm 25.00 (0.00) 2.49 (1.29) 5.93 (1.74) 0.19 (0.01) - (-)

Infliximab 48.48 (7.03) 4.01 (0.26) 3.01 (0.15) 0.14 (0.01) - (-)

Etanercept 52.90 (19.54) 2.08 (0.53) 3.18 (0.67) 0.14 (0.01) - (-)

Adalimumab 34.39 (12.39) 2.83 (1.56) 6.93 (0.36) 0.11 (0.01) - (-)

Ustekinumab 29.70 (9.76) 2.04 (0.42) 6.16 (1.26) 0.14 (0.00) - (-)

Secukinumab 25.00 (0.00) 2.29 (0.90) 3.45 (1.15) 0.18 (0.01) - (-)

MTX/Infliximab 64.78 (19.99) 3.10 (0.99) 5.83 (1.01) 0.16 (0.04) - (-)

Average efficiency - (-) - (-) 0.29 (0.00) 0.30 (0.02)

Overall popularity - (-) - (-) - (-) 0.20 (0.00)

Equally to the SLIM results, the performance concerning outcome prediction, listed in table 6.8,

varies greatly among models. However, compared with the SLIM approach, the individual treat-

ment GBM models provide more accurate outcome predictions. The overall outcome prediction

accuracy is, according to the inner cross-validation results, even superior to most of the CF

methods. Nevertheless, for treatments for which only inferior SLIM models could be provided

(e.g. Secukinumab and Fumaderm), it is also only possible to model inferior GBM models. With

regard to ranking capabilities, however, the GBM shows very weak performance.
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To conclude, the GBM’s capability to model non-linear relationships within the data benefits

RMSE and very accurate outcome predictions can be yielded for some therapy models. This

is apparently even true in spite of the limited amount of training data the modeling is based

on. Nonetheless, also these results must be considered with caution as partly based on only

very little training and validation data. In connection with the GBM approach it becomes

particularly clear that a model providing accurate outcome predictions not necessarily provides

large MAP@3 scores. Under the assumption of a reliable model, this indicates that in many

cases not the most suitable therapy options in terms of affinity score optimization was actually

applied. Beyond that, as already mentioned above, the model-based approaches in general come

along with 100 % coverage of therapy options, which are ranked according to predicted outcome,

and 100 % overlap, which RMSE computation is based on.

6.2 Generalization Performance Evaluation

When considering the outer cross-validation results summarized in table 6.9 and visualized in

figures 6.16 and 6.17, especially the large variance of the results becomes apparent. Within each

outer cross-validation loop, almost all consultations are available as training data. Only those of

test patient p are excluded. Hence, the applied leave-one-patient-out cross-validation approach

is, on the one hand, assumed to be almost unbiased. However, the major downside of many small

folds is, on the other hand, the large variance of the individual estimates as it is observed. In

each iteration p, the performance estimate is based on the consultations of patient p only, which

is highly variable. Especially variance of MAP@3 scores, pictured in figures 6.17, is remarkably

large and partly spread over the entire value range. However, it must be considered that the

large MAP@3 variance is also owned to the characteristic of the evaluation metric itself. As

only one actually applied treatment is available for each test consultation, the MAP@3 score

for recommendations which meet the ground truth and are ranked among the top-3 can become

1, 0.5, or 0.33, respectively. Actually applied therapies not ranked among the top-3 yields a

MAP@3 of 0. Consequently, recommendation lists yielding MAP@3 scores of 0.33 can still be

regarded as useful recommendations.

The generalization performance, estimated in the outer leave-one-patient-out cross-validation

for all of the proposed algorithms is summarized in table 6.9 and figures 6.16 and 6.16.

Statistical hypothesis tests are applied to evaluate the proposed algorithms performance differ-

ences with respect to their statistical significance. Both, central tendency of outcome prediction

(RMSE) and of recommendation quality (MAP@3), are examined. Due to multiple algorithms

to be compared, firstly an omnibus test under the null hypothesis is conducted and, in case

of rejection of the null hypothesis, pairwise post hoc tests are performed. The null hypotheses

are that the RMSE and MAP@3 results from each algorithm, including the baselines average

efficiency and overall popularity, stem from the equal distribution. The pre-defined level of

significance is α = 0.05.

As the leave-one-patient-out cross-validation uses the identical patients and consultations for

evaluation, the individual algorithms’ results are considered to be paired. Both, RMSE and
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Table 6.9: Outer cross-validation loop results. Mean and standard deviation of outcome predic-
tion accuracy (RMSE), recommendation list agreement (MAP@3), average overlap
with applied treatment and coverage of treatment options.

Method RMSE MAP@3 Coverage Overlap

CF (Cosine) 0.17 (0.13) 0.86 (0.23) 0.51 (0.23) 0.94 (0.17)

CF (Pearson) 0.17 (0.13) 0.85 (0.24) 0.52 (0.23) 0.94 (0.17)

CF (Manhatten) 0.14 (0.09) 0.54 (0.32) 0.89 (0.10) 0.91 (0.21)

CF (Euclidean) 0.14 (0.09) 0.55 (0.32) 0.90 (0.10) 0.92 (0.19)

DR (Gower) 0.18 (0.12) 0.61 (0.33) 0.65 (0.21) 1.00 (0.00)

DR-RBA (Gower) 0.15 (0.11) 0.67 (0.32) 0.66 (0.20) 1.00 (0.00)

DR (Euclidean) 0.20 (0.11) 0.59 (0.36) 0.58 (0.24) 1.00 (0.00)

DR-LMNN (Euclidean) 0.19 (0.12) 0.54 (0.30) 0.70 (0.21) 1.00 (0.00)

DR-Rules a (Gower) 0.18 (0.12) 0.59 (0.34) 0.57 (0.21) 1.00 (0.00)

DR-Rules b (Gower) 0.18 (0.12) 0.48 (0.38) 0.48 (0.22) 1.00 (0.00)

DR-Rules c (Gower) 0.18 (0.12) 0.45 (0.39) 0.40 (0.21) 1.00 (0.00)

DR-Impute 0 (Gower) 0.19 (0.10) 0.65 (0.31) 0.66 (0.21) 1.00 (0.00)

DR-Impute 1 (Gower) 0.18 (0.11) 0.59 (0.32) 0.66 (0.21) 1.00 (0.00)

SLIM 0.18 (0.11) 0.68 (0.33) 1.00 (0.00) 1.00 (0.00)

GBM 0.15 (0.10) 0.31 (0.33) 1.00 (0.00) 1.00 (0.00)

Average efficiency 0.29 (0.13) 0.26 (0.30) 1.00 (0.00) 1.00 (0.00)

Overall popularity - (-) 0.23 (0.35) 1.00 (0.00) 1.00 (0.00)

MAP@3 results are numerical values but cannot be considered to be normally distributed. As

the majority of errors are small and the frequency decreases as the error value increases, the

RMSE distribution is right-skewed. In case of the MAP@3 score, the MAP@3 distribution

is left-skewed as the majority of observed scores are large or is bimodal. Consequently, non-

parametric, i.e. distribution free tests are used in both cases although having less statistical

power than parametric tests. The omnibus test applied within this work which meets the de-

scribed data properties is the Friedman test [119]. The probability distribution of the Friedman

test statistic is approximated by the chi-squared distribution. As both, the number of algorithms

to be compared (k = 17) and the number of included partitions (n = 175 and n = 154) are

sufficiently large, this distribution assumption can be regarded to be valid and provide reliable

p-values. In order to identify which groups are significantly different from each other in case

of a rejected null hypothesis, the Wilcoxon signed-rank test [382] is used. Moreover, in order

to counteract the globally increased likelihood of incorrectly rejected null hypotheses, i.e. an

increased Family-wise Error Rate (FWER), which arises with multiple simultaneous tests based

on equal samples, the Bonferoni-Holm-correction is applied [332]. The individual test samples

in each outer cross-validation iteration can be regarded identically distributed, however, cannot

be considered independent due to overlapping data. As a consequence, the test results may still

be overly optimistic and should be interpreted with caution.

Since the overlap of many algorithms is less then 100 %, only those patients for whom all al-
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Figure 6.16: Outer cross-validation loop results. Outcome prediction accuracy (RMSE) evalu-
ated for all proposed methods.

gorithms provide RMSE or MAP@3 scores can be considered for statistical testing. As has been

verified, imputing the average RMSE or MAP@3 score for each algorithm, respectively, does not

change the hypothesis results but only slightly impacts the yielded p-values and renders the test

more conservative. Therefore, only the intersection of patients with available RMSE or MAP@3

score are used for the hypothesis testing in the following, encompassing n = 175 and n = 154

observations, respectively.

Concerning RMSE, the null hypothesis is rejected with test statistic 267.09 and p = 3.70e−48

according to the Friedman test. Also regarding the ranking capabilities of the compared al-

gorithms, quantified with the MAP@3 score, significant differences among the evaluated al-

gorithms are evident with test statistic 678.02, p = 2.03e − 133.

As a conclusion of the findings of the omnibus tests, Wilcoxon signed-rank tests are performed

in the following on all pairs of algorithms with differing evaluation scores as stated above. RMSE

and MAP@3 results are shown in figure 6.18 and 6.19, respectively.

Looking at the results summarized in table 6.9 and p-values in figure 6.18 and 6.19, it becomes

obvious that all examined algorithms perform significantly better than the two baseline meth-

ods average affinity and overall popularity in terms of both, outcome prediction and therapy

ranking. Hence, it can be concluded that estimating outcome based on local data only is highly

beneficial and also the model-based approaches are, in spite of the small training data sizes,
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Figure 6.17: Outer cross-validation loop results. Recommendation list agreement (MAP@3)
evaluated for all proposed methods.

successful.

In case of the conventional CF, the observed RMSE mean values from the inner cross-validation

loop can be reproduced in the outer loop. The generalization performance of the Minkowski

metrics are superior to the correlation-based similarity measures Cosine similarity and Pearson

correlation coefficient and even outperform all other approaches apart from the Gower patient-

data CF with attribute weighting and the GBM model. Within the group of Minkowski metric

approaches, no significant performance difference is evident. Also regarding MAP@3, coverage

and the overlap of prediction and ground truth, inner cross-validation results and estimated

generalization performance are comparable concerning the central tendency. Variance of the

outer loop results however is, as initially discussed, remarkably large especially for MAP@3.

Nevertheless, a statistically significant superiority of the correlation-based conventional CF al-

gorithms over all other evaluated approaches is evident. Within the group of correlation-based

methods, no statistically significant difference can be shown. As was already observed for the

inner loop, prediction accuracy is improved at the expense of MAP@3 and vice versa. One

possible explanation is, as already described in section 6.1.1.1, the way how therapy outcomes

are treated which have not been applied in common. As large overlap of commonly applied

treatments increases similarity in case of Cosine similarity and Pearson correlation, those ap-

proaches are more selective concerning treatments observed in the neighborhood which yields
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Figure 6.18: p-values of pairwise post hoc tests (Wilcoxon signed-rank tests), comparing all
presented algorithms concerning prediction accuracy (RMSE). Statistical signi-
ficant performance differences (p > α) are colored blue and results from the same
distribution are colored red.
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Figure 6.19: p-values of pairwise post hoc tests (Wilcoxon signed-rank tests), comparing all
presented algorithms concerning agreement with the ground truth (MAP@3). Stat-
istical significant performance differences (p > α) are colored blue and results from
the same distribution are colored red.
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larger MAP@3 and lower coverage. The Minkowski metrics, on the other hand, especially focus

on similar outcome when computing similarity which results in small RMSE scores. Those met-

rics are, however, not sensitive to the number of co-occurring treatments in two vectors to be

compared.

According to the patient-data CF generalization performance in table 6.9, Gower similarity ap-

pears to achieve even better results in the outer than in the inner loop for the selected K in

terms of both, outcome prediction and quality of the recommendation list. The patient-data CF

approach obviously benefits from the outer loop’s larger training data to select the neighborhood

from. Similar observations can be also made for the Euclidean distance when comparing the

outer with the inner cross-validation loop results. Those differences are, however, small and

average RMSE and coverage are in the same general range as the inner loop results. The Gower

similarity’s superiority over the Euclidean distance from the inner cross-validation loop can be

confirmed with the generalization performance. Regarding the agreement between ground truth

and recommendations, on the other hand, no statistically significant performance difference

between Gower similarity and the Euclidean distance can be shown for the patient-data CF.

Comparing the patient-data CF results from the outer cross-validation loop after applying the

proposed RBA algorithm, the benefits of linear attribute scaling shown during model selection

can be, to a reduced extent, reproduced in terms of RMSE and MAP@3. However, the improve-

ment of the Gower similarity baseline is only statistically significant for MAP@3.

In case of the LMNN approach, the large improvement due to data transformation observed in

the inner cross-validation loop cannot be reproduced in the outer loop. No significant perform-

ance differences can be shown for RMSE and MAP@3. Both evaluation criteria, even tend to

drop in comparison with the Euclidean distance baseline. This observation can be explained

with a optimistically biased inner cross-validation result as the transformation matrix L is op-

timized using the entire training partition in each outer cross-validation iteration p. Thus, also

the evaluation partitions of the inner cross-validation loop are contained in this outer loop train-

ing partition, which potentially causes overfitting. However, it can be assumed that when using

a more comprehensive dataset, the ability to generalize the underlying data patterns increases

and also the generalization performance of the LMNN optimization algorithm improves and

approaches the results of the inner loop.

The slight benefits of the imputation strategy which is demonstrated in the inner loop cannot

be generalized by the leave-one-patient-out cross-validation results. Both, MAP@3 scores and

RMSE resulting from applying the raw version (impute 0 ) and any of the imputation strategies

impute 1 and impute 2, stem from the equal distributions. Hence, no advantages can be proven.

In contrast, in case of the post-filtering by exclusion rules, the MAP@3 deteriorations of the

Gower similarity patient-data CF are statistically significant. As already discussed for the in-

ner cross-validation loop, especially rules a and rules c obviously comply with the underlying

ground truth as both only have minor impact on the recommendation list’s agreement with the

attending physician. In contrast, rules b clearly deteriorates the MAP@3 results. Neverthe-

less, also according to the generalization results, none of the applied exclusion rules is capable

of improving the recommendation list as could be expected. Note that the resulting MAP@3
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scores of not applying exclusion rules (DR (Gower)) and applying rules a as well as the MAP@3

scores of applying rules b and rules c are partially identical over a wide range of outer loop iter-

ations. Therefore, this test statistic cannot be computed. Moreover, because the application of

exclusion rules has no impact on RMSE results, also no comparison among the Gower similarity

patient-data CF and the versions with exclusion rules are computed.

Finally, as is also shown in table 6.9, also the two applied ML algorithms, SLIM and GBM

are comparable to the inner loop results regarding both outcome scores. Here, the trade-off

between outcome prediction performance and recommendation list agreement becomes particu-

larly apparent. Whereas SLIM provides outcome predictions comparable to the correlation-based

conventional CF and the patient-data CF approaches, this linear model is capable of outper-

forming the Minkowski metric conventional CF in terms of MAP@3. In contrast, the decision

tree ensemble achieves comparatively small mean prediction errors which, however, differ only

statistically significantly from the Euclidean distance patient-data CF. The quality of the ranked

therapy list hardly outperforms the overall popularity baseline.

6.3 Comparison with Expert Performance

As introduced in section 5.2, the performance of the proposed algorithms and system variants

is further compared with the recommendations of human experts. Therefore, the subset of

100 test consultations from different patients and dermatologists’ recommendations described

in section 4.6 are utilized. As mentioned before, the test dataset comprises 74 consultations

in which therapy was actually changed and 26 without change. Overall, therapy recommenda-

tions, alternative to the given ground truth, are available from six experts (Dermatologists from

different clinics in Germany). In the following, however, only those four experts are included

which rated all 100 test consultations. Each expert was asked to prioritize up to three therapy

recommendations selected from 20 unique options. These recommendations form top-3 ranked

recommendation lists as is output by the recommender system.

In the following, only a selection of the most successful CF approaches are included, namely

Cosine similarity and Euclidean distance conventional CF and the patient-data CFs with and

without attribute weighting and attribute space transformation. Training a ML model for each

of the 20 unique treatment options is unreliable due to partially only few samples. Comparable

to the outer cross-validation loop, an individual CF model is optimized and selected for each

of the test consultations. Models are selected on the basis of a 5-fold cross-validation and

according to the same criteria as applied in section 6.1. To quantify agreement with the ground

truth MAP@3 and Cohen’s Kappa scores from the highest priority only (κ1) and either of the

recommendations (κall) are computed. Table 6.10 summarizes the resulting scores from the 100

test consultations in comparison with expert performance and baseline results.

The given results clearly indicate that none of the presented algorithms is capable of providing

recommendations with comparable agreement as the human experts. According to this compar-

ison, the Euclidean distance conventional CF is the most promising approach which, however, is

still only capable of ranking the actually applied treatment on average in 0.54 (0.50) cases among

140 Dissertation Felix Magnus Gräßer



6 Results

Table 6.10: Recommendation performance (MAP@3) of the selected algorithms compared to the
recommendations of human experts.

Metric RMSE MAP@3 Coverage Overlap κ1 κall

CF (Cosine) 0.27 (0.22) 0.37 (0.45) 0.46 (0.21) 0.66 (0.48) 0.12 0.26

CF (Euclidean) 0.17 (0.17) 0.40 (0.43) 0.89 (0.10) 0.90 (0.30) 0.12 0.36

DR (Gower) 0.22 (0.14) 0.28 (0.37) 0.44 (0.15) 0.86 (0.35) 0.04 0.35

DR-RBA (Gower) 0.20 (0.16) 0.34 (0.39) 0.59 (0.17) 0.84 (0.37) 0.04 0.35

DR (Euclidean) 0.22 (0.13) 0.27 (0.36) 0.45 (0.16) 0.82 (0.39) 0.03 0.37

DR-LMNN (Euclidean) 0.22 (0.16) 0.32 (0.38) 0.55 (0.14) 0.83 (0.38) 0.03 0.29

Expert 2 - 0.44 0.14 - 0.30 0.53

Expert 4 - 0.47 0.09 - 0.33 0.49

Expert 5 - 0.43 0.11 - 0.33 0.43

Expert 6 - 0.48 0.10 - 0.35 0.53

the top-3 recommendations (Precision@3). The overall significantly lower MAP@3 scores com-

pared with the estimated generalization performance from section 6.2 has two obvious origins.

Firstly, in this experiment 20 instead of 8 therapy options are available for selection. Hence, the

overall probability to select the ground truth option is decreased. Secondly, the subset of 100

test consultations can be regarded particularly difficult cases as the majority contain therapy

changes compared to the previous consultation. Note that the proportion of consultations in

the overall data that contains therapy changes is only 14.24 %. Also noteworthy is the much

lower coverage with which human experts meet the ground truth. Given that experts give three

recommendations per case, coverage would amount to 15.00 %. As, however, the number of re-

commendations decreases with decreasing priority, the true average coverage value is even lower

with 10.93 %.
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This chapter summarizes additional own studies addressing further applications and extensions

of the proposed therapy recommender system approach. On the one hand, quantification of

health status and outcome based on raw vital signs for various conditions is studied in section 7.2

and section 7.3. On the other hand, sentiment analysis methods are applied to patient reviews

to extract information on experience with applied treatments in section 7.4. Some of the results

described in this chapter are published in [135] and [125].

7.1 Introduction

Successful management and treatment of diseases relies on monitoring outcome such as the

effectiveness of therapies. The objective quantification of health status and treatment success

by means of clinical scores and parameters is a prerequisite. Such scores and parameters can

either be based on questionnaires or derived from vital signs, biosignals, or other markers.

Figure 7.1 extents the therapy recommender system inputs by such raw data.

Figure 7.1: Extension and generalization of a therapy recommender system’s input.

Moreover, as already mentioned in chapter 1, an additional source of information regarding

treatment success and patient satisfaction can be available in the form of written text. To re-

veal such information, NLP techniques, namely sentiment analysis, can be employed to patient

reviews in order to assess experience with applied treatments.
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7.2 Sleep Stage Classification

7.2.1 Introduction

Sleep plays a vital role regarding health and wellbeing. In addition to its recovery function, e.g.

in the form of an increase in growth hormone levels, human sleep plays a central role in the

consolidation of memory and learning as well as in the maintenance of the immune system [331].

However, there is a multitude of sleep disorders, most of which are characterized by daytime

sleepiness, difficulties in falling asleep or staying asleep, or the occurrence of abnormalities

during sleep. The long-term health consequences of such disorders include an increased risk of

high blood pressure, diabetes, obesity and depression as well as an increased risk of heart attack

and stroke. Monitoring sleep to prevent and treat serious health problems is therefore crucial.

[146]

On average, adult humans spend approximately seven to eight hours a day sleeping. A

healthy eight hour sleep contains four or five sleep cycles, each lasting approximately 90 minutes

and containing different stages including light sleep (N1 and N2) and deep sleep (N3) NREM

sleep stages and rapid eye movement (REM) sleep [331, 187]. The different sleep stages are

characterized in table 7.1 along with typical Electroencephalogram (EEG) characteristics. An

exemplary hypnogram, visualizing the sequence of sleep stages, is shown in figure 7.2 (a). Besides

age and individual circadian rhythm, pathological findings and medication intake have significant

impact on the sleep architecture [331, 187]. Therefore, in order to assess sleep quality, diagnose

sleep disorders and assess treatment outcome, sleep stage classification plays an important role.

Table 7.1: Terminology and characteristics of sleep stages according to the The AASM Manual
for the Scoring of Sleep and Associated Events [70]

AASM Description Characteristics

W Wake Alpha and beta wave activity

N1 Snoozing

Theta wave activity

Slow eye movements

Declining muscle tone (< W)

N2 Stable sleep

Sleep spindles, K-complexes

No eye movements

Declining muscle tone (< N1)

N3 Deep sleep

Fraction of delta waves > 20%

No eye movements

Declining muscle tone (< N2)

REM Rapid-Eye-Movement

Theta wave activity, Saw-tooth waves

Rapid eye movements

Lowest average muscle tone

Gold standard in sleep medicine is the Polysomnography (PSG), which includes the recording
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of a series of biosignals, such as the EEG, the Electrooculogram (EOG), and the Electromyogram

(EMG). Often the Electrocardiogram (ECG), peripheral pulse oximetry as well as respiratory

airflow and effort measurements are also recorded. Whole night PSG recordings are segmented

into 30 s epochs and manually scored by sleep experts according to standardized guidelines, i.e.

the American Association of Sleep Medicine (AASM) Scoring Manual [70]. As the manual PSG

scoring is a laborious process and is subject to the experts personal experience and condition

(inter-rater agreement κ ≈ 0.68 [77]), automatic sleep stage classification is of great interest and

the object of current research [34].

Beyond that, in order to reduce the impact of data acquisition on the patient’s sleep, simplify

the attachment of sensors and electrodes, and even facilitate home monitoring, reliable sleep

stage classification with a reduced number of biosignals is investigated. Besides reducing the

number of EEG channels [42], the assessment of sleep quality based on heart rate and respiration

only is of special interest as both can be retrieved at various positions and with comparably little

impact [166, 278].

7.2.2 Background and Related Work

As fundamental visceral functions, the cardiovascular and respiratory system are regulated by

the Autonomous Nervous System (ANS). Due to the mutual activation of the sympathetic and

parasympathetic branch, the ANS also plays a central role in the physiology of sleep. The sym-

pathovagal balance of the ANS shows a profound variability related to sleep stages. [267, 353]

Consequently, characteristic changes in cardiorespiratory parameters can be a basis to differen-

tiate between sleep stages. Previous studies have focused on the analysis of Heart Rate (HR)

and Heart Rate Variability (HRV) as well as on respiratory characteristics and influences. [267,

353, 235, 69]

Especially HRV (Tachogram) analysis is a widely used instrument for non-invasive evaluation

of the autonomous cardiovascular control [215, 311]. Conventional methods for HRV analysis

can be divided into time domain, frequency domain, and non-linear analysis. Whereas the

time domain analysis includes statistical methods for the measurement of variability of normal

beat-to-beat intervals, the frequency-based methods investigate the distribution of absolute and

relative power density within predefined frequency bands [215]. For short time analyses (5 min),

a range of three main frequency components are distinguished: Very Low Frequency (VLF) in the

range 0 Hz to 0.04 Hz Low-Frequency (LF) in the range 0.04 Hz to 0.15 Hz and High-Frequency

(HF) in the range 0.15 Hz to 0.4 Hz [215].

In the following, characteristic observations in cardiorespiratory parameters, depending on

sleep stages, are described.

From a cardiorespiratory perspective, NREM sleep can be regarded as period of autonomous

stability. The transition from wake via stages N1 and N2 to deep sleep stage N3 is characterized

by a progressive increase in parasympathetic regulation and sympathetic inhibition, whereby

respective maxima and minima are reached in deep sleep. This shift of the sympathovagal

balance can be determined by the progressive decrease of the mean heart rate, as well as the

power increase in the HF band and the power decrease in the LF band [267, 353, 235]. The
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breathing rate was observed to increase progressively during the transition from wake to deep

sleep stage N3 [141, 184].

REM sleep is characterized by instability of the cardiovascular and respiratory system and by

immediate outbreaks of varying sympathetic activity. The transition from NREM to REM state

is related to significant increase in mean heart rate and the occurrence of irregular breathing

patterns. Corresponding to the predominance of the sympathetic nervous system and vagal

withdrawal, a power increase in the LF band and a power decrease in the HF band can be

observed [267, 353, 69]. Also, an overall increased breathing rate in REM sleep compared to

NREM sleep was observed [184].

Table 7.2 lists related works from the scientific literature focusing on sleep stage classifica-

tion using cardiorespiratory signals. Here, works using HR time series, HRV features as well

as respiratory signals from various sources are included. The stated results rather provide a

basic performance estimate than facilitate direct comparison as different data sets are used for

validation.

Table 7.2: Comparison of related works on sleep stage classification using cardiorespiratory sig-
nals.

Ref. Year Classifier Features Results

Wake, sleep

[166] 2009 MLP HRV features, respiration rate features Acc. ≈ 0.85

[63] 2015 HMM HRV features Acc. ≈ 0.80

[214] 2018 CNN HR time series κ = 0.24 − 0.54

Wake, N1/N2/N3, REM

[282] 2007 LDA HRV features, respiration rate features κ = 0.45

[389] 2016 Threshold Respiration rate features κ = 0.49

Wake, N1/N2, N3, REM

[97] 2013 LDA HRV features Acc. ≈ 0.75

[107] 2015 LDA HRV features, respiration rate features κ = 0.49

[350] 2017 GBM Respiration rate features κ = 0.56

[200] 2018 CNN, SVM HRV features, respiration rate features κ = 0.54

[278] 2019 LSTM HRV features κ = 0.61

[5] 2019 CNN-LSTM-
CRF

Respiration rate time series κ = 0.57

Wake, N1, N2, N3, REM

[335] 2020 CNN-LSTM HR time series, respiration rate time
series

κ = 0.59
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7.2.3 Data

All following experiments are conducted on an excerpt of the Sleep Heart Health Study (SHHS)1,

a multi-center cohort study to determine cardiovascular and other consequences of sleep-disordered

breathing. The initial examination (SHHS-1) includes the polysomnograms and hypnograms of

6.441 subjects aged ≥ 40 years. In this work, only SHHS-1 data from subjects without acute

cardiovascular diseases are included (219 subjects) and patients with sleep-disordered breathing

(Apnoe-Hypopnoe-Index (AHI) < 5) (182) excluded. Both can be expected to render sleep

staging more difficult due to altered sleep architectures. Moreover, 26 subjects are excluded

due to bad ECG signal quality, overall resulting in 237 subjects. For each 30 s epoch reference

annotations are provided [70], whereas stages N1 and N2 are combined into a single light sleep

phase. The resulting class distribution over all subjects and epochs are shown in figure 7.2 (b).

Using a subject-wise approach, the data is randomly divided (80 %/20 %) into a train an test

set, comprising 190 and 47 subjects, respectively.
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Figure 7.2: Exemplary hypnogram (a) and sleep stage distribution over subjects and epochs (b).

7.2.4 Approaches and Results

Initially, the series of RR intervals, i.e. the tachogram, is extracted from the PSG ECG channel

and the series of breath-to-breath intervals from the thoracic excursion signal. The approaches

for sleep stage classification studied within this work can be divided into methods (i) using

features extracted from the RR intervals and breath-to-breath time series and such methods (ii)

1https://sleepdata.org/datasets/shhs
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using the time series directly as input. As sleep cycles feature inherent temporal dependencies,

all chosen algorithmic approaches facilitate to model processes or sequences of outputs. All

experiments classify input signals into one of the four sleep stages wake, N1/N2, N3, or REM.

7.2.4.1 Feature-based Sleep Stage Classification

For the extraction of HRV and respiratory features, a 180 s sliding window with 30 s step size is

applied to the digitized and pre-filtered signals. As listed in table 7.3, a vector of 10 conventional

HRV features (1 time domain, 7 frequency domain, 2 non-linear) and two respiratory features

are extracted and assigned to each epoch.

Table 7.3: HRV and respiratory features extracted from RR interval and breath-to-breath time
series, respectively [215].

Feature Unit Description

HRV

VLF* ms2 Power in the VLF range (<0.04 Hz)

LF ms2 Power in the LF range (0.04 Hz to 0.15 Hz)

HF ms2 Power in the HF range (0.15 Hz to 0.4 Hz)

Total power ms2 Variance of all RR intervals

LF/HF – Ratio LF/HF

LF norm* – Normalized power in the LF frequency range

HF norm* – Normalized power in the HF frequency range

SD1 ms Standard deviation 1 derived from Poincaré plot

SD1 ms Standard deviation 2 derived from Poincaré plot

RRI* ms Normalized mean RR intervals

Respiration
BBI* ms Normalized mean breath-to-breath intervals

covBBI* ms Normalized standard deviation of breath-to-
breath intervals

HMMs, as introduced in section 3.3.4, attempt to model a process where a sequence of emitted

symbols is observed and an intrinsic underlying pattern of states exists. The aim of classification

is to find the most likely hidden state sequence given a HMM and the observed symbol sequence.

Transferred to the sleep stage classification problem, each hidden state corresponds to a sleep

stage and the observed symbols to the associated feature vector. The HMM is characterized

by the compact notation λ = (A, B, Π), with the transition probabilities A between each sleep

stages, the emission probabilities B for each sleep stage, represented by continuous PDF, and

the initial state distribution Π. The PDFs in B are characterized by the mean vector µ and

covariance matrix Σ of features observed for each sleep stage. Consequently, the HMM λ can

be estimated from the training data. Utilizing the observed sequence of symbols, namely the

sequence of feature vectors, the classification of sleep stages is implemented as the decoding

problem described in section 3.3.4 and the Viterbi algorithm is used to find the most likely sleep

stage sequence. Two implementation are contrasted: using all 12 features listed in table 7.3 and

using only a subset of six selected features (∗) which are determined by preliminary experiments.
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As can be seen in table 7.4, the reduced feature set is not inferior to the larger feature space.

Furthermore, the application of a Random Forest (RF) classifier introduced in section F.1.5

and the combination of RF and HMM is studied. Therefore, for an observed feature vector, the

classification probability of the DT ensemble is utilized as emission probability. Whereas the RF

classifier shows comparable results, the combination of RF and HMM can improve the results.

A further approach to integrate temporal information into the classification is to compute new

features from the given series of HRV and respiratory features. To do so, a CNN architecture as

described in section 3.3.5.2 is implemented which learns individual filter kernels for each input

feature sequence comprising historical observations. In order to maintain interpretability and

allow for feature analyses, only a single convolutional layer, no additional pooling layer, and a

filter size equal to the considered signal sequence is implemented. As actual classifier, a MLP

with two hidden layers is utilized. The network hyperparamters are optimized by means of a

3-fold cross-validation. Best results, which outperform all previous methods, could be achieved

with 13 filter kernels for each feature time series and a considered signal length of 13 time steps

(6.5 min).

As already stated in section 3.3.5.3, the cyclic structure of RNNs allow to utilize historical

information to influence internal states and outputs rather than just taking advantage of inform-

ation available at a given time step. This makes RNN architectures, namely LSTM networks,

particularly suitable for processing sequential data such as sleep stages. Similarly to the CNN

approach, for each feature an input sequence of fixed length is fed into the network. As the

network can be assumed to learn feature importance, all 12 available features are included. For

the sake of simplicity, the applied LSTM network only consists of one LSTM layer and one

fully-connected output layer (Softmax). For each sequence time step, up to the epoch to be

classified, outputs are fed back into the recurrent units and influence the internal states. Be-

sides an uni-directional LSTM network, also a bi-directional LSTM network is implemented and

optimized which not only incorporates information from the past but from both past and future.

Best results could be yielded with signal length of 120 time steps (60 min) and 15 and 50 LSTM

units, respectively. According to the results in table 7.4, the classifiers obviously doesn’t benefit

from the bi-directional approach.

7.2.4.2 Raw Time Series-based Sleep Stage Classification

The RR interval and breath-to-breath time series are given as sequences with non-equidistant

discrete values, since not only the values themselves but also the distances between values

depend on the RR and breath-to-breath intervals, respectively. In order to derive continuously

sampled sequences as valid classifier input representations, the available time series are linearly

interpolated and re-sampled with 4 Hz. According to the reference annotations, the sequences are

segmented into 30 s epochs. These 30 s epochs to be classified are further extended by appending

the preceding and succeeding four epochs, i.e. 120 s segments, resulting in 270 s sequences as

classifier input. Preliminary studies have proven that more input information added to the epoch

1Method evaluated with differing test data.
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Table 7.4: Feature-based sleep stage classification results.

Method Description κ

HMM-6 HMM using six dimensional feature vector as emitted symbol. 0.31

HMM-12 HMM using 12 dimensional feature vector as emitted symbol. 0.30

RF-6 RF using six dimensional feature vector as input. 0.291

HMM+RF-6 RF using six dimensional feature vector to predict class probability
which is used instead of the probability density functions.

0.341

CNN-6 CNN which learns individual filter kernels for each of the six input
feature sequences. The extracted features are classified by a MLP.

0.53

LSTM-12 Uni-directional LSTM using 12 feature sequences as input. 0.49

bi-LSTM-12 Bi-directional LSTM using 12 feature sequences as input. 0.46

Table 7.5: Raw time series-based sleep stage classification results.

Method Description κ

CNN-RR CNN architecture using RR interval time series as input. 0.45

CNN-BB CNN architecture using breath-to-breath interval time series as input. 0.44

MCCNN Multichannel CNN architecture, which concatenates the CNN-RR
and CNN-BB outputs to form MLP classifier input.

0.56

MCCNN-
LSTM

Multichannel CNN architecture extended by a bi-directional LSTM
layer, using the MLP outputs as input.

0.61

itself is essential for successful classification [335].

Four approaches are investigated. CNN architectures using RR interval time series (1) and

breath-to-breath time series (2) individually are implemented and optimized based on [214]. The

networks are build of five convolution blocks for hierarchical feature extraction, each consisting

of two 1-dimensional convolutional layers, and a MLP with two hidden layers and softmax

output layer for classification. Furthermore, a multichannel CNN (3) is implemented which

concatenates the feature maps generated by the two individual CNNs described above. The

concatenated vector is fed into a MLP for classification. Finally, the multichannel CNN is

extended by an additional bi-directional LSTM network (4) as proposed in [335]. With the

objective to reveal more global patterns, the LSTM layer uses the series of MLP outputs as

input. The outputs of the bi-directional LSTM network is finally classified into four sleep stages

by a softmax layer. The results summarized in table 7.5 indicate that CNNs are powerful tools

for classification of sleep stages based on raw RR interval or breath-to-breath interval time

series. However, especially in combination with LSTMs to exploit global sequential information,

all other examined approaches are outperformed regarding achieved Cohens’s Kappa scores.

7.2.5 Conclusions

Considering the results from table 7.4, none of the investigated HMMs are capable of achieving

classification results comparable with neural network approaches (CNNs, LSTMs). One major
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difference is the limitation of first-order HMMs, that the current state depends on the previous

state only. Earlier states are not considered. Moreover, the time invariance of HMMs assume

constant state, i.e. sleep stage, transition probabilities, which is not reflecting the characteristic

of sleep. The proposed neuronal networks, in contrast, exploit much more information from

previous or even future time steps and hence can even overcome the time invariance limitation.

Especially the CNN approach to learn patterns in sequences of feature time series proves to be

superior in this respect.

As already stated in section 7.2.4.2, sleep stage classification using raw RR interval and breath-

to-breath interval time series is in no way inferior to the best performing feature-based approach.

The CNN is obviously capable of extracting at least as meaningful features from the time series

as the conventional HRV and respiratory features. Integrating information about the global

temporal sequence of sleep stages by means of a downstream LSTM layers further improves the

classification quality significantly and produces state-of-the-art results.

Future works must focus on training and testing classification algorithms using more extensive

benchmark data sets including pathological hypnograms and input data. In this context, also

the development of classifiers specialized for a subgroup of subjects and patients is a possible

approach. Here, future research must deal with the identification of relevant characteristics, such

as demographic properties or health conditions, in order to form meaningful groups. Finally,

end-to-end classification, utilizing raw ECG and respiration signals as classifier inputs can be

focus of further research. According to own preliminary studies using raw ECGs only (κ = 0.16),

there is still potential.

7.3 Parkinson’s Disease Patient Gait Assessment

7.3.1 Introduction

The neurodegenerative PD (idiopathic Parkinson syndrome) is the second common neurological

disease after Alzheimer’s [195]. PD is caused by the progressive necrosis of dopaminergic cells in

the brain and is characterized in particular by motor symptoms. The four cardinal symptoms

are akinesis or bradykinesis (inhibited or slowed down voluntary motor function), rigor (muscle

stiffness), tremor (shaking), and postural instability [122, 89]. However, also non-motoric symp-

toms, such as cognitive (Dementia) or psychological (Depression) conditions, are associated with

PD [122, 89]. Since the cause for the dopaminergic cell necrosis is still unknown, only symptoms

are treated. Due to the progressive characteristic of the disease, decrease in effectiveness, and

ADEs, typical pharmaceutical treatments must be subject to constant monitoring [111, 283].

Consequently, continuous and objective assessment of severity and treatment response are es-

sential for successful treatment and management. A common tool to assess the severity of PD is

the Unified Parkinson’s Disease Rating Scale (UPDRS) [362], classifying patients on the scale 0

(no impairment) and 199 (maximal impairment). The UPDRS consists of four parts which are

summed up, whereas the part covering motoric examinations (UPDRSM) is of special interest

of this research.
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The four stated cardinal symptoms affect patient’s motion in general and gait in particular.

Consequently, gait analysis can be a central component to assess severity and progression of

the disease. In the following experiments, sensor recordings of vertical ground reaction forces

are utilized to assess the gait of PD patients and healthy control subjects: The objective is to

differentiate between patients and healthy control subjects.

7.3.2 Background and Related Work

A literature review revealed five papers which use the same dataset and record selection as this

work. From those, three works apply feature extraction based on domain knowledge and two

works apply raw data for modeling. Table 7.6 summarizes the identified publications.

Table 7.6: Comparison of related works on Parkinson’s gait classification using the same dataset
and records as this work.

Ref. Year Classifier Features Results

[76] 2013 SVM Frequency domain features Acc. = 91.20 %
[393] 2016 RBF Network Modeling of gait dynamics Acc. = 96.39 %
[1] 2017 RF Time domain features and frequency do-

main features.
Acc. = 98.04 %

[156] 2019 CNN Raw sensor signals. Acc. = 88.70 %
[99] 2020 CNN Raw sensor signals. Acc. = 98.70 %

7.3.3 Data

In the following studies, the publicly available Gait in Parkinson’s Disease1 benchmark dataset is

used, which contains gait recordings from 93 PD patients and 73 healthy controls. Underneath

each foot eight sensors are placed to measure vertical ground reaction forces, sampled with

100 Hz, as a function of time while walking. Besides each sensor record, the sum of each food is

given, resulting in 18 signals for each record. Besides reference walks, were the subjects walked at

their usual, self-selected pace for approximately two minutes, the impact of additional cognitive

tasks, walking aids, and stimulations was studied in the provided data. In this work, however,

only the reference walks are included and combined into an overall dataset. Four patients are

excluded as relevant labels or data is not available, resulting in data of 162 patients.

For performance evaluation, subjects are divided into a train (129) and test (33) partition.

The distribution of severity of the disease (UPRDRSM) is taken into account in the partitioning.

7.3.4 Approaches and Results

Comparable to the sleep stage classification experiments describe in section 7.2, the studies on

gait analysis done in this work can be divided into methods (i) using features extracted from

the sensor signals (ii) and such methods using the sensor signals directly as input.

1https://physionet.org/content/gaitpdb/1.0.0/
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Table 7.7: Feature-based gait classification results.

Method Description Acc.

RF-673 RF using all available features. 82.1 %

RF-18 RF using best feature subset according to feature selection. 82.1 %

7.3.4.1 Feature-based Classification and Regression

Based on an extensive literature review, gait describing features were identified and extracted

from each channel after signal preprocessing (low-pass filtering, denoising, elimination of outliers,

normalizing with subjects’ weights). The overall 673 extracted features are grouped into the

three categories: time domain features (264), which can be further divided into kinetic (220)

and spatio-temporal (44) features, frequency domain features (300), and symbolic dynamics

(109). For the kinetic features, statistical characteristics are calculated from the preprocessed

signals, the center of pressure, and the heel strike and toe off values. Spatio-temporal features

are derived from statistics on gait cycle characteristics and asymmetries. Frequency domain

features are derived by applying a discrete wavelet transform and computing statistics on the

resulting coefficients. Finally, signals are transformed to symbolic sequences, split into word

sequences, and statistics on the probability distribution of word types are computed, yielding

symbolic dynamics features.

Due to its robustness and state-of-the-art classification results, a RF is employed as classific-

ation algorithm. As the importance of the various features assumably varies and features are

subject to redundancies, a feature selection algorithm is employed to reduce the feature space

dimension.

As benchmark results, all 673 features are applied as classifier input. Furthermore, a wrapper

method, namely a Sequential Forward Selection (SFS), is utilized in order to select the most

important features. As summarized in table 7.7, the feature selection strategy is not capable of

improving classification accuracy compared to using all available features. The RF inherently

selects the most important features. However, results prove that same performance could be

yielded by providing just a small fraction (2.67 %) of the available features. From 18 selected

features, nine stem from time domain, whereas only one is spatio-temporal, five are from time

domain, and four are symbolic dynamics features.

7.3.4.2 Raw Time Series-based Classification and Regression

Comparable to section 7.3.4.1, the vertical ground reaction force signals of each channel are

preprocessed by normalization with the subjects’ weight. Moreover, the signals are divided into

segments of defined length with overlap 50 % which are to be classified. Subjects are assign to

a class based on majority voting. In this work, segment length of 1 s and 2 s are studied, i.e.

100 and 200 samples. Additionally, each variant is studied with sampling frequency reduced to

50 Hz, i.e. 50 and 100 samples.

A CNN architecture based on [99] is implemented and optimized for the given task. The
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Table 7.8: Raw time series-based gait classification results.

Method Description Acc.

CNN-1-50 CNN architecture using 1 s segments as input samples with 50 Hz. 97.0 %

CNN-1-100 CNN architecture using 1 s segments as input samples with 100 Hz. 93.9 %

CNN-2-50 CNN architecture using 2 s segments as input samples with 50 Hz. 97.0 %

CNN-2-100 CNN architecture using 2 s segments as input samples with 100 Hz. 93.9 %

network is build of individual 1-dimensional CNNs for each of the 18 channels. Each of those

parallel CNNs consist of four convolutional layers and a fully connected layer, whereas two

convolutional layers are always followed by a max-pooling layer. The kernel length is always

three, whereas the first layer comprises 16 kernels and all the followings 32. The classifier

hyperparameters are determined with a grid search by means of a 5-fold cross validation on the

training partition. The concatenated CNN outputs are fed into a MLP with two hidden layers for

classification. According to the test subject results of the four segmentation variants summarized

in table 7.8, the 50 Hz sampling implies to be advantageous. Considering the segment accuracies,

however, especially the 2 s variant sampled with 50 Hz is superior to all other approaches.

7.3.5 Conclusions

A large number of gait describing features are described in the literature from which a vast ma-

jority are implemented. According to the results from table 7.7, good classification results could

be yielded. The applied feature selection is capable of reducing the feature space dimensionality

to a large extend while maintaining classification accuracy. Nevertheless, the CNN, which learns

features from each of the input signals, is clearly superior independent of he applied segmenta-

tion strategy. Longer time periods of 2 s, which contain an entire gait cycle, with simultaneously

reduced sampling rate, are advantageous. Suchlike, state-of-the-art classification results can be

yielded. According to the results from the literature listed in table 7.6, the feature-based ap-

proach is not generally inferior to CNNs. Hence, it can be assumed that emphasis on features

and feature selection strategies can further improve the feature-based results.

The demonstrated results distinguish the subjects into PD patients and healthy control sub-

jects. In order to provide a more precise evaluation of treatment effectiveness, future works

will focus on reliably assessing the patients’ severity of the disease in terms of a clinical score

such as the UPDRSM. Based on the described sensor records, regression techniques can be

utilized to predict such scores. Own preliminary experiments, which use the features described

in section 7.3.4.1 as independent variables of a RF regression algorithm, yields a RMSE of

6.75. The variance in the UPRSM that is declared by the independent variables (coefficient of

determination R2 = 0.17) indicates that those predictions require further investigations.
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7.4 Drug Review Sentiment Analysis

7.4.1 Introduction

As already introduced in chapter 1, discrepancies in patient cohorts and treatment conditions

can have significant impact on the effectiveness and potential risks of ADEs such as side effects.

Therefore, post-marketing drug surveillance, i.e. pharmacovigilance, plays a major role concern-

ing drug safety once a drug has been released. Online platforms containing patient experience

with pharmaceutical drugs can be regarded a valuable source of information for pharmacovigil-

ance. Additionally, patient-initiated observational studies based on such platforms can facilitate

a novel mean to assess the effectiveness of treatment options [380].

However, requirement for automatic processing and analysis of the information contained

in large amounts of unstructured information is the transformation of inherent aspects into

numerical ratings. One typical way of doing so, in the context of product ratings, is sentiment

analysis, which is an extensively studied domain in processing free-text in web media analyses

[204]. Sentiment analysis of patient data in general and on drug experience in particular is

a challenging research problem that is currently receiving considerable attention. One of the

main issues is the lack of annotated data, which is crucial for accurate sentiment classification.

Especially, labeled data dealing with distinct aspects, is rare. Moreover, the availability of

labeled data is highly domain dependent. Patients suffering from certain conditions are more

active in reporting experience on their treatment than others.

In this work (1) the possibility to apply sentiment analysis on drug reviews, and the identi-

fication of effectiveness of a drug as well as the severity of side effects caused by a drug using

patient reviews is studied. Therefore, classification of side effects and effectiveness is treated

as an aspect-based sentiment analysis problem. Furthermore, to address challenges related to

the limited data availability, (2) the transferability of the trained models among domains, i.e.

diseases, as well as (3) across data sources is studied.

7.4.2 Background and Related Work

Many approaches to sentiment analysis are based on sentiment lexicons. These approaches

recognize sentiment terms and patterns of sentiment expressions in natural language texts by

matching textual units with opinion words in lexicons annotated for sentiment polarity. However,

studies showed that sentiment analysis is often domain-dependent since the polarity of single

terms can differ depending on the context they are used in [124, 86]. Furthermore, the language

in online forums is highly informal and user-expressed medical concepts are often nontechnical,

descriptive, and challenging to extract. Which is why typical lexicons are of limited use for

drug review analyses. An alternative approach treats the task as classification problem. Here,

machine learning is used to train classifiers on domain-specific data sets to detect the polarity

at sentence or document level. Such approaches have the additional advantage to be capable of

performing medical sentiment analysis over multiple facets, i.e. sentiments can be learned on

specific aspects such as side effects and effectiveness.
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Also related works on drug review sentiment analysis can basically be divided into approaches

applying lexicons with sentiment scores [237, 225, 297] or such approaches learning sentiments

employing supervised classification [128]. Moreover, several studies have attempted to improve

domain adaption or cross-domain sentiment classification, although not on drug review aspect-

level but among various entities as products, movies or restaurants. In [232] a comprehensive

systematic literature review on cross-domain sentiment analysis is presented.

7.4.3 Dataset

Data from two independent webpages for retrieval of user reviews and ratings on drug exper-

ience is used. Drugs.com is, according to the provider, the largest and most widely visited

pharmaceutical information website providing information for both, consumers and healthcare

professionals. It provides user reviews on specific drugs along with related condition and a 10

star user rating reflecting overall user satisfaction. Similarly, Druglib.com is a resource on drug

information for both, consumer and healthcare professionals. It comprises considerably fewer

reviews but reviews and ratings are provided in a more structured way. Reviews are grouped

into reports on the three aspects benefits, side effects and overall comment. Additionally, ratings

are available concerning overall satisfaction analogously to drugs.com as well a 5 step side effects

rating, ranging from no side effects to extremely severe side effects and a 5 step effectiveness

rating ranging from ineffective to very effective.

User comments and ratings are gathered from both pages using an automatic web crawler,

resulting in two data sets comprising 215,063 reviews from Drugs.com and 3,551 reviews from

Druglib.com, respectively. Furthermore, three level polarity labels for overall patient satisfaction

and three level effectiveness and side effect scores using thresholds as specified in table E.3

are derived. Both data sets are further split into training and test partitions according to

a stratified random sampling scheme with the proportion of 75 % and 25 %, respectively. As

shown in table E.3, the total number of individual drugs in the Drugs.com data amounts to

6,345 in comparison to the 541 drugs contained in the data derived from Druglib.com. However,

the average number of reviews per drug is still considerably higher in the Drugs.com data

(58.86) than in the Druglib.com data (7.66). The amount of unique conditions contained in

the Druglib.com data, on the other hand, seems to exceed the number of the Drugs.com data.

However, it is to be noted that conditions in the latter platform are user inputs in contrast to

Drugs.com where conditions are selected from a defined list. Therefore, in this case conditions

comprise variations in spelling, synonyms and combination of conditions.

7.4.4 Approaches

The objective of this study is threefold:

1. Prediction of the overall patients’ satisfaction with applied medications and sentiments on

side effects and effectiveness by employing classification-based sentiment analyses.

2. Evaluating the transferability of models among medical domains, i.e conditions, by learning
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a model on data from one condition (source domain) to classify overall patient satisfaction

in data from another condition (target domain).

3. Evaluating the transferability of models across data sources, i.e Drugs.com and Druglib.com,

by learning a model on reviews from one data source (source data) to classify overall patient

satisfaction and sentiments on side effects in data from another source (target data).

Whereas for the first two tasks the ground truth is available for both data sets, distinct reviews

covering the aspects side effects and effectiveness along with labels are only available for the

Druglib.com data. To evaluate the transferability of side effects prediction models across data

sets, 400 randomly picked samples from the Drugs.com data were manually labeled concerning

side effects by two independent annotators. The inter-rater agreement measured with the Co-

hens’s Kappa statistic is 81.84 %which is considered as very strong agreement. The annotators

discussed all mismatching entities and agreed on a consensus.

Both approaches, sentiment analysis regarding overall patients’ satisfaction and the aspect-

based analysis of patients’ sentiments on side effects and medication effectiveness were converted

to classification problems. In case of overall patient satisfaction, the user ratings are converted

to three disjoint classes representing the polarity of a patient’s sentiment regarding the applied

medication (negative, neutral, positive). In addition, also the severity of side effects and the

level of effectiveness were transferred to three disjoint classes as described in table table E.3.

For all prediction tasks, a n-grams approach is applied in order to represent the user reviews.

That means both, single tokens, e.g. words, (unigrams) as well as two or more adjacent tokens

(bigrams, trigrams), e.g. 2- or 3-word expressions, are used to derive features for classification.

Based on the total collection of occurring n-grams, i.e. the corpus, each review can be repres-

ented as a sparse vector of token counts.

Initially, all reviews are preprocessed according to a standard scheme: Alphabetic characters are

transferred to lowercase and special characters, punctuation and numbers are removed. Sub-

sequently, the preprocessed documents are tokenized on spaces to obtain the overall vocabulary

and a feature space representations of each review. No stop words are removed from the texts.

However, to reduce the feature space, terms that have a relative document frequency higher

than a given threshold are discarded when building the vocabulary.

Using the extracted feature representations, LogR is employed for building sentiment models for

the various prediction tasks. Model hyperparameters are tuned using a 5-fold cross-validation

grid search on the respective training data, targeting the best Cohens’s Kappa score. Optimized

hyperparameter include n-gram number of adjacent tokens, token document frequency threshold,

and LogR regularization strength. As shown in table E.2, besides the annotated subset from the

Drugs.com data, labels are considerably unbalanced. To compensate for this disproportionate

distribution, classifications errors are penalized with a weight inversely proportional to its class

frequency during training.

All experiments are evaluated by computing confusion matrices and deriving both, accuracy and

Cohens’s Kappa scores.

Dissertation Felix Magnus Gräßer 157



7 Further Applications

Table 7.9: In-domain sentiment analysis.

Aspect Source Acc. κ

Overall rating Drugs.com 92.24 83.99

Overall rating Druglib.com 68.73 27.60

Overall rating (all) Druglib.com 75.39 43.62

Benefits (Effectiveness) Druglib.com 77.70 44.13

Side effects Druglib.com 77.12 60.22

7.4.5 Experiments and Results

7.4.5.1 In-domain Sentiment Analysis

In an initial experiment, overall performance when applying sentiment analysis to drug reviews

is studied. Therefore, one model for each data set (Drugs.com and Druglib.com), to classify

overall patient satisfaction reviews, is trained and evaluated utilizing the corresponding training

and test data. Additionally, as in case of the Druglib.com data the comments section might only

contain supplementary remarks, a combination of all three reports (benefits, side effects and

comments) of a patient on a respective drug were concatenated to represent the overall patient

satisfaction review.

Furthermore, the expression of sentiments on the two aspects side effects and effectiveness

within patient generated texts are studied. Therefore, two LogR models are optimized and

trained on the benefits and side effects training data derived from Druglib.com, respectively.

Both, predicted effectiveness and side effect labels are compared against the actual labels ob-

tained from the user ratings.

As detailed in table 7.9, overall patient satisfaction can be mined from patient texts with very

high accuracy and Cohens’s Kappa score in case of the Drugs.com data. The significantly worse

performance reported for the Druglib.com data is assumed to have two main reasons. First,

the data set is considerably smaller, which hampers the modelling. Moreover, the comments

section is mainly used for supplementary information on personal experience and drug applic-

ation and not explicitly for comments on satisfaction. When combining all three aspects, i.e.

patient reports, classification performance can be improved over the previous result. In both

approaches concerning the Druglib.com data the largest error contribution results from neutral

ratings classified as positive which cannot be improved by data combination. The performance

improvement, however, results from the reduction of misclassified negative ratings.

Sentiment analysis related to the specific aspects effectiveness and side effects shows promising

results. Especially the side effects comments seem to provide valuable features that facilitate

mining sentiments on side effects. Here, errors are mainly due to misclassification of neighbouring

classes, namely excessive missclassification as mild / moderate side effects. In case of effectiveness

classification the larges error contribution stems from marginally / moderately effective reviews

classified as considerably / highly effective, whereas considerably / highly effective labeled reviews

can be classified correctly with 95 % accuracy. However, it must be kept in mind that also
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comments on benefits not necessarily relate to effectiveness only but may also encompass other

aspects.

7.4.5.2 Cross-domain Sentiment Analysis

In this experiment the performance of models built on data from one condition, i.e. the source

domain, and evaluated on data related to other conditions, i.e. the target domain is studied.

To do so, overall patient satisfaction models are trained on drug review subsets related to one

selected condition only. These domain models are then evaluated on other condition related

subsets. Domains, i.e. subsets of particular conditions, are selected by extracting five of the

most frequent disorders present in the Druglib.com data set from diverse medical fields. These

are Contraception (38,436), Depression (12,164), Pain (8,245), Anxiety (7,812) and Diabetes,

Type 2 (3,362), with frequency in descending order. In-domain performances, i.e. training and

testing of data from the same condition, are reported as averaged 5-fold cross-validation results.

Figure 7.3: Cross-domain sentiment analysis results: (a) Accuracy and (b) Cohen’s Kappa of
sentiment predictions.

The results summarized in figures 7.3 (a) and (b) demonstrate that the selected training

domain has considerable impact on the classifier performance when applied to data from other

domains. Especially, in-domain training and testing clearly outperforms all cross-domain setups.

This finding clearly emphasizes the hypothesis of domain-specific vocabulary. For Contraception

and Diabetes, even the overall rating classification using the entire data could be outperformed.

However, the model trained on Depression data only seems to generalize better on the other

domain data than e.g. a model trained on Diabetes data only. Furthermore, there are com-

binations showing better performances than others, e.g. Depression and Anxiety compared to

Contraception and Anxiety, which is assumed to be due to underlying coherences of side effects

or expressions and domain specific vocabulary used by patients. Moreover, the medical field
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dealing with Depression and Anxiety is closely related. From drugs concerning Depression (115)

and Anxiety (81), 33 drugs are applied in both conditions whereas for Contraception (181) and

Anxiety there is no overlap. Furthermore, the confusion matrices showed that main classifica-

tion errors occurred on neutrally labeled reviews for all domain combinations. Transferring the

task to a binary classification problem without classification of neutral entities would result in

substantially higher accuracy and Cohens’s Kappa values.

7.4.6 Cross-data Sentiment Analysis

Finally, the transferability of the trained models among data sources is studied. Overall patient

satisfaction models are trained on both associated training data sets and evaluated on drug

reviews from the other, independent data source test set. As discussed in section 7.4.5.1, in case

of the Druglib.com data a combination of all three reports (benefits, side effects and comments)

were concatenated to represent the overall patient satisfaction review. Additionally, the per-

formance of a classifier trained on side effect comments from the Druglib.com data is evaluated

on the manually annotated data from Drugs.com.

Table 7.10: Cross-data sentiment analysis.

Aspect Train Source Test Source Acc. κ

Overall Rating Drugs.com Druglib.com 75.29 % 0.48

Overall Rating Druglib.com Drugs.com 70.06 % 0.27

Side Effects Druglib.com Drugs.com 49.75 % 0.26

Transferring a sentiment model trained on the significantly larger Drugs.com data to the

Druglib.com data shows promising classification capabilities. Evaluating the model trained

on the much smaller Druglib.com data with the Drugs.com data, however, doesn’t perform

satisfactorily. We assume such findings, on the one hand, to result from the limited training

data size. On the other hand, differing data properties are likely to restrict the transferability. As

stated previously, in contrast to the Druglib.com data Drugs.com reviews are highly unstructured

covering multiple aspects in an entire review.

As summarized in table 7.10, applying the model trained on the side effect aspect to the

Drugs.com reviews also performs poorly. The largest fraction of the classification error stems

from reviews labeled as reporting No or severe / extremely severe side effects as mild / moderate.

The features extracted from the Druglib.com data obviously don’t contain sufficient discrimin-

ating power to classify the unstructured Drugs.com review which are not dealing with a single

aspects only. Utilizing a larger training data set, leading to less ambiguous features, might

improve the results.

7.4.7 Conclusions

Within this preliminary work, the application of machine learning based sentiment analysis of

patient generated drug reviews was studied. Depending on aspect and data source promising
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classification results could be obtained. Concerning model portability, in-domain (i.e. condition)

training and evaluation shows very good classification results, the performance of models trained

on one specific condition and tested on another condition, varies among domains. However,

conditions which belong to similar medical fields and are partly treated with equal medications

also show higher potentials for model transferability. Cross-data evaluation, i.e. training and

testing classifiers on data from different sources, is only unsatisfactorily possible with the applied

classifier and features. The application of a more sophisticated classifier, namely a LSTMs

network, was additionally investigated. Instead of representing each review in a single vector,

the sequence of words (one-hot-encoding) is exploited. Moreover, word embeddings are applied

to yield denser word representations and a reduced feature space dimension: (1) A readily trained

GloVe embedding [265], (2) a GloVe embedding adapted to the given corpus, and (3) a Word2Vec

embedding [223] trained on the given data. However, neither the LSTMs network nor the word

embeddings were capable of outperforming the basic and n-gramm an LogR approach. The

results clearly indicate that especially aspect-based sentiment analysis requires more extensive

data sets to extract features with sufficient generalization capabilities.
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In section 8.1, the results presented in chapter 6 are discussed, related to the hypotheses formu-

lated in chapter 1, and general findings are named. The following section 8.2 highlights problems

and challenges and gives some suggestions and ideas for future research directions. Section 8.3,

finally, summarize this thesis.

8.1 Discussion and Generalization

Considering the generalization performance demonstrated in chapter 6, it can be concluded that

the first two research questions formulated in section 1.2 can be answered positively for all

proposed algorithms and hence the two associated hypotheses are not rejected. According to

the demonstrated outcome prediction performance, it is possible to predict outcome of therapy

options more accurately than average outcome, which is represented by the average affinity

baseline. The therapy recommendations derived from these predictions clearly outperform the

overall popularity baseline which answers the second research question. The third hypothesis,

however, is rejected. MAP@3 scores and Cohen’s Kappa results achieved by all of the proposed

algorithms are clearly below the ones resulting from the expert recommendations.

Nevertheless, it can be concluded that the proposed approaches are capable of supplementing a

physician’s experience and external evidence with practice-based evidence from local cohorts, as

proposed in [209], and can provide evidence where it is missing otherwise. The proposed therapy

recommendation approach is capable of automatically providing actionable recommendations at

the time and location of decision-making, as stated as essential features of CDSSs according to

[168].

A general advantage of deriving recommendations from outcome predictions is independence

from the popularity of a drug. The treatment options that are potentially most successful

with respect to an addressed outcome objective are recommended. This allows the selected

algorithm to be optimized with regard to the respective treatment outcome. As was shown in

section 2.2, the majority of works in the literature optimize and evaluate treatment decision

support regarding agreement with expert recommendations or guidelines instead of outcome.

With this purpose in mind, both, the neighborhood-based CF methods, which estimate outcome

and rank treatment options based on local data only, but also the model-based approaches show,

in spite of the small training data sizes, great potential. However, in terms of the endpoints

formulated in section 1.2, outcome prediction accuracy (RMSE) and agreement between ground

truth and top-3 recommendation list (MAP@3), the much simpler CF algorithms are in no way

inferior to the more sophisticated model-based approaches given the available data. The essential
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strength of the CF approaches is twofold. On the one hand, the modeling based on local data

clearly benefits accuracy when predicting outcome of the actually applied therapy. On the other

hand, only treatment options are included into the recommendation list which are observed in

that neighborhood of the target patient. Hence, CFs additionally feature the selection of a subset

of therapy options which improves the recommendation quality, i.e. MAP@3. To summarize,

outcome prediction accuracy and ranking capability benefit, a feature which is not given by the

ML approaches.

Beyond this advantage, the CF methods bring the additional value of being very intuit-

ive. Predictions and recommendations are, beyond attribute importance estimates, additionally

transparent and explainable in terms of the included neighboring consultations. On the one

hand, this neighborhood can be inspected directly if kept at a moderate size. On the other

hand, the computation of local summary statistics or a “Prototype Patient” can be supplement-

ary or alternative means of providing insight into the outcome prediction and recommendation

process. An exemplary Graphical User Interface (GUI) (dashboard), which is developed within

the context of this work, is demonstrated in appendix B.5. Whereas figure C.1 shows the data

input and presentation forms, figure C.2 shows the output of an exemplary therapy recommend-

ation list in the form of bar charts with affinity score predictions. For a selected therapy option,

summary statistics from the local neighborhood on which the recommendation is based are visu-

alized in pie charts. This gives insight into decision-making and can additionally serve as a basis

for integration of patient values and preferences into treatment decisions. Both are important

features to push acceptance of such CDSSs as reported in the literature about CDSSs [29, 321].

Nonetheless, such interpretability issues are hardly addressed in the related works which were

identified in sections 2.2 and 2.3. The demonstrated algorithms optimize recommendations in

terms of the affinity score. Nevertheless, also other outcome measures, e.g. each of the indicat-

ors described in chapter 4, can be applied individually. Providing treatment recommendations

based on a selected outcome aspect can facilitate to chose a treatment which meets a distinct

patient preference such a low risk of ADEs.

One particular strength of the ML approaches is their superiority in terms of scalability as

soon as larger amounts of data are to be processed. Computation complexity for prediction

and ranking at run-time is negligible for trained models in comparison with the CF approaches.

The very powerful GBM regression model provides accurate outcome predictions, however, at

the expense of low MAP@3 scores. The SLIM recommender, on the other hand, provides

better ranking capabilities. Yet, outcome prediction is inferior to many of the other proposed

algorithms.

When comparing conventional and patient-data CF, it is shown that the therapy history seems

to be a particularly important attribute which actually justifies the conventional CF approach.

Even though the cold start issue is a limiting difficulty. For the practical application this means

that this treatment history along with associated outcomes must be thoroughly documented.

Considering either of the evaluation criteria, the patient-data CF approaches are clearly inferior

to the conventional approaches. Extending the attribute space by additional patient character-

istics is obviously not beneficial. There are two data properties that basically contribute to the
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Table 8.1: Qualitative comparison of the proposed algorithms regarding the aspects scalability,
interpretability, and the two evaluation criteria outcome prediction accuracy and
recommendation quality.

Method Prediction Ranking Interpretability Scalability

CF (Cosine) + ++ ++ −

CF (Pearson) + ++ ++ −

CF (Manhatten) ++ − ++ −

CF (Euclidean) ++ − ++ −

DR (Gower) − + ++ −

DR-RBA (Gower) + ++ ++ −

DR (Euclidean) −− − ++ −

DR-LMNN (Euclidean) −− − ++ −

DR-Rules a (Gower) − − ++ −

DR-Rules b (Gower) − −− ++ −

DR-Rules c (Gower) − −− ++ −

DR-Impute 0 (Gower) − + ++ −

DR-Impute 1 (Gower) − −− ++ −

SLIM − + + +

GBM ++ −− + +

Average efficiency −− −− −− +

Overall popularity −− −− −− +

observed performance difference. Firstly, the significantly larger attribute space (25 vs. 159) in-

creases the curse of dimensionality effects. The computed similarity or distance measures, which

are fundamental for selecting a patient’s neighborhood, become imprecise and meaningless with

increasing attribute space. Secondly, lacking relevance but also redundancy of attributes intro-

duces significant noise into the similarity or distance computation. Attributes which are not

relevant for the outcome prediction problem degrade accuracy. Hence, attribute selection and

weighting is a crucial factor of the patient data approach. Based on the given data, however,

results cannot be improved by the proposed supervised attribute scaling or attribute space trans-

formation methods. It must be noted that the performance and reliability of attribute weights

depend not only on the a priori assumptions of similarity and dissimilarity, but in particular on

sufficient and meaningful training data. Also the implemented imputation strategies apparently

do not favor the performance of the patient-data CF but the Gower similarity is obviously suf-

ficiently capable of coping with the missing values. However, because of the prerequisite to use

complete datasets in order to apply SLIM and LMNN, the proposed imputation strategies can

be recommended for such patient data methods.

In case of the conventional CF, the similarity measure must be chosen dependent on the main ob-

jective whether to improve outcome prediction accuracy or the agreement between recommenda-

tions and actually and successfully applied treatments. As was shown, the inter-rater agreement

renders the ground truth of applied treatments rather unreliable regarding the MAP@3 results.
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The uncertainty concerning the validity of the ground truth is also shown in the context of

the post-filtering. The exclusion rules are hardly represented by the data. Due to the limited

reliability of the recommendation ground truth, algorithm selection should be based on outcome

prediction accuracy rather than the ranking of treatment options. Though, it can be expected

that larger data volumes, especially if embedding experience from different physicians and facil-

ities, will also render the MAP@3 score a more trustworthy evaluation criterion. With respect

to the stated focus but also considering the interpretability issue, the conventional CF using

Minkowski metric can be considered as the overall preferable algorithm.

A qualitative comparison of all presented algorithms regarding the discussed aspects scalab-

ility, interpretability, and the two evaluation criteria outcome prediction accuracy and recom-

mendation quality, is provided in table 8.1. Beyond that, the advantages and disadvantages of

the proposed approaches are summarized and compared in table D.1.

8.2 Future Perspectives

The major challenge and limitation of this work is the small data foundation on which it is based

but also the low quality inherent from manual data extraction and structuring. This problem is

reinforced by the comparatively large number of therapy options and the unbalanced distribution

of applied treatments, which makes reliable modeling even more difficult. Two factors determine

the demand for a large data foundation. On the one hand, a large variety of patients must be

included in order to find a sufficiently homogeneous neighborhood for each target patient. On the

other hand, sufficient representations of each relevant treatment option must be available within

this homogeneous neighborhood to provide reliable outcome statistics. Benchmark datasets

with suitable longitudinal data are unfortunately not available, which in turn emphasizes the

uniqueness of this work. Furthermore, due to the poor relationship between data quantity and

attribute space size, the curse of dimensionality is an omnipresent problem of this work. This

becomes particularly evident as the additional comprehensive patient data offers hardly any

advantages over the approaches using treatment history only. But also the potential of attribute

weighting (RBA), attribute transformation (LMNN), and embedded attribute selection (SLIM,

GBM) can hardly be exploited. It may be expected, though, that the model-based approaches,

as well as RBA and LMNN, will develop their capabilities with larger and more representative

data volumes.

Another critical issue is the aspect of only partially observed (hidden) ground truth [221],

meaning that only outcome for one recommended and applied treatment option per consultation

is available. On the background of the low inter-rater agreement it is obvious that the given

ground truth, derived from the physicians’ recommendations, and consequently the MAP@3

scores lack reliability. But also RMSE ground truth, derived from the observed outcome, relies

heavily on the patients’ adherence to the recommended treatment. Whereas both limitations

can be countered by a large dataset that covers a wide variety of patients and treatment options,

the hidden ground truth can also be tackled by samples rated by multiple experts.

As the essential prerequisite for successful modeling and consultation comparisons is to identify

166 Dissertation Felix Magnus Gräßer



8 Conclusion

the most important attributes, a more detailed analysis using attribute selection methods on

a more comprehensive dataset is highly recommended. In this context, future work could also

focus on exploring determining factors and attribute weights by including expert knowledge. It

must be kept in mind, thought, that attribute importance as well as similarity of clinical cases

is often subjective. To avoid reliability problems as mentioned above, parameters should hence

be based on majority votes or consensus from large-scale surveys.

Essential for the recommended neighborhood-based CF methods is the identification of a

neighborhood which is characterized by a high degree of homogeneity. Within this work, the

demonstrated CF algorithms determine homogeneity by similarity measures. However, also

indicators measuring purity in DTs such as Shannon entropy or Gini index (3.3.2) can be

investigated. Finally, instead of defining a fixed neighborhood size K, utilizing a similarity or

homogeneity threshold to determine the neighborhood size could be studied.

A noteworthy challenge in connection with the practical applicability of the neighborhood-

based CF methods is the calculation effort at runtime. The user-based CF requires searching the

entire consultation database which becomes increasingly impracticable as the amount of data

increases. Conceivable approaches to tackle this challenge is the application of k-dimensional

trees or predefined clusters of patients or consultations which are searched. k-means clustering,

for example, involves the additional attraction of deriving prototypes or templates of patient

representations that can be used for interpretation purposes. Nevertheless, there always is

a trade-off between prediction accuracy and scalability. Cluster-based methods may exhibit

better scalability than bare neighborhood-based modeling but may not satisfactorily address

the prediction for patients with rare characteristics.

Model-based approaches typically are not subject to efficiency issues during the prediction

phase. As a consequence, larger datasets also bear the potential to make more complex ML

models applicable and attractive. Especially deep neural networks (“Deep Learning”) are cur-

rently experiencing great popularity because of their good performance and capability to learn

difficult patterns. They are, however, dependent on large training data sets and interpretab-

ility or providing explanation of the model’s reasoning becomes difficult. A key drawback of

all proposed algorithms is there reduced capability to consider the temporal dependencies of

consultations. The sequence of consultations can be considered as observations over a defined

period of time resulting in temporal sequences of varying length. According to the taxonomy of

tasks which make use of the ordering property of sequential data formulated in [90], a reasonable

choice is to consider treatment recommendation as sequence classification. Here, a single class

label is predicted which characterizes the entire (multivariate) input sequence. Exemplary al-

gorithms capable of performing such tasks while considering time dependencies are e.g. HMMs

[277] but also RNNs such as LSTMs [157] or Gated Recurrent Units (GRUs) [66], which are

successfully applied in other domains such as time-series classification. Besides interpretability

issues, again the required data volume is the exclusion criterion of such methods within the

scope of this thesis.
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It is important to bear in mind that clinical data today is an expensive asset. In partic-

ular, feedback on interventions from longitudinal observations is difficult to obtain and often

associated with long time constants. This shortage also concerns development and evaluation

of CDSSs, which can be considered as the major reason for the small number of comparable

works in the literature. Moreover, clinical data is rarely recorded in a structured and processable

format but requires extensive preprocessing and transformation which is subject to uncertainties

and noise.

One alternative to larger datasets could be, at least for research and development purposes, to

further simplify the task, e.g. by recommending drug groups. In case of the present example,

conventional, biopharmaceutical and other medications could be recommended instead of indi-

vidual pharmaceuticals. Biopharmaceutical drugs could be further grouped according to their

mechanism, namely into TNF-α antagonists, IL-12/13 antibody, and IL-17 antibody drugs.

However, it can be assumed that the digitization of the health care system will continue to

advance in the coming years. As a consequence, also EHRs will be increasingly captured and

interchanged in standardized formats (HL71, FHIR2). But also government initiatives such as

the Telematikinfrastruktur3, which aims to digitally network all actors in the healthcare system,

and the Digitale-Versorgung-Gesetz will drive the development of health apps (Digitale Gesund-

heitsanwendungen4) and digitalized health data. Nevertheless, the question of whether more

data alone is beneficial depends heavily on the underlying structure of the data and cannot be

generalized.

The envision of a recommender system, as introduced and visualized in section 1.2, implements

a closed feedback loop which ensures that the proposed system learns from every patient at

every consultation. To do so, application specific data, such as the condition related attributes,

recommended and applied treatments, and the associated outcomes are recorded in a structured

and standardized fashion. The goal is to gain experience for the full range of relevant treatment

options from many similar patients and a large variety of patients. Additionally, in order to

avoid bias, the system collects data at multiple facilities (multi-center) with different geographic

locations. Assuming that data is collected from a system in operation, a strategically expedient

action could be to provide recommendations or other decision support based on heuristics and

rules until a data-driven approach provides added value. Such static systems, however, require

careful maintenance in order to keep the knowledge source updated and to preserve the benefit

for the user. Real benefit of such a CDSS can only be delivered if is is, as already discussed in

chapter 2, seamlessly integration into the clinical workflow and into the healthcare ecosystem.

This benefit must be recognizable and measurable such as in terms of saved time or money or

improved outcome.

With this work, the author hopes to contribute ideas and basics to the state of the art,

development and application of therapy recommendation systems. Overall, it is hoped that such

systems, in a reliable and clinically evaluated form, will find their way into practical medicine

1https://www.hl7.org/
2https://www.hl7.org/fhir/
3https://www.gematik.de/telematikinfrastruktur/
4https://www.bfarm.de/DE/Medizinprodukte/DVG/_node.html
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in order to improve health care in terms of objectivity, safety and patient satisfaction.

8.3 Summary

Within this thesis, an exemplary CDSS is developed which provides individualized pharma-

ceutical drug and drug combination recommendations for patients suffering from Psoriasis.

Therefore, data representing patients and consultations were extracted from health records and

transformed into a structured format. These representations allow for descriptive statistical

analyses and development and evaluation of data-driven prediction algorithms. The intention

is to predict patient-specific treatment outcomes in order to derive recommendations. Suchlike,

treatments are supposed to be recommended independent from overall popularity or average

efficiency but personalized to a patient and consultation. Moreover, the data-driven approach

does without domain knowledge, adapts to the underlying data and is capable of improving with

a growing database.

CF algorithms, derived from the RS domain, but also state of the art ML algorithms are

adapted to the problem at hand and are evaluated regarding prediction accuracy (RMSE).

In order to measure outcome, a summarizing score, denoted as affinity score, is developed

which combines multiple outcome aspects as efficiency, relative change of the PASI and ADEs.

Additionally, the proposed algorithms’ capability to rank treatment options suchlike that the

potentially most optimal treatments are preferred is studied. The ranked therapy lists are rated

by MAP@3, a score derived from IR. Two different versions of input information are contrasted:

approaches solely relying on treatment history and approaches which incorporate a wide range of

patient describing attributes to represent a patient and consultation. As especially in the latter

representations missing values are pervasive, different imputation strategies are investigated,

depending on the mechanisms underlying the missing values. Finally, various combinations of

evidence-based and expert-based exclusion rules are implemented in order to filter potentially

inadequate treatment options from the recommendation lists. All algorithms and variations are

optimized and evaluated in a nested cross-validation loop in order to use the limited amount of

available data efficiently.

The estimated generalization performance shows that all proposed algorithms are capable of

outperforming the baseline predictions and recommendations. The results also show that the

much simpler CF algorithms are in no way inferior to the more sophisticated model-based ML

approaches given the available data. This can be attributed to their ability to simultaneously

predict outcome and select a subset of treatment options based on similar cases.

Concerning outcome prediction and considering interpretabililty of recommendations it was

shown that the conventional CF approaches utilizing information on treatment history only

and using Minkowski metrics are the preferred algorithms. The conventional CF utilizing

correlation-based similarity measures, on the other hand, outperforms all other studied ap-

proaches regarding ranking quality of recommendations. As is further shown, neither in terms

of the estimated outcome prediction, nor in terms of recommendation agreement with the ground

truth, generalization performance of the CF algorithms benefits from the incorporation of ad-
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ditional patient data. Given the available data, this limitation could not be eliminated with

the investigated attribute weighting and data transformation approaches. Also the model-based

approaches, which also depend on sufficient and informative data, are in total inferior regarding

the addressed major objectives: good prediction accuracy and interpretable recommendation.

Nevertheless, when comparing recommendations generated by different versions of the proposed

therapy recommender system with those provided by human experts, the recommender system

is inferior. Inter-rater agreement (Cohen’s Kappa) between automatically generated recommend-

ations and given ground truth is even worse than the already small agreement between experts

and ground truth which was revealed in an own preliminary study.

Beyond the recommender system algorithms, further own studies, which address the quanti-

fication of health status and outcome based on raw vital signs, are demonstrated in this thesis.

Those include sleep stage classification based on cardiorespiratory signals and PD gait assess-

ment. Finally, also the application of sentiment analysis methods to patient reviews, targeting

the extraction of information on experience with applied treatments, was studied and is de-

scribed.
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Appendix A - Literature Review

Table A.1: Results from a systematic literature review including studies on treatment, therapy,
medication or drug decision support or recommender systems. The identified public-
ations were analyzed regarding algorithm (GB - Guideline-based, RB - Rule-based,
PB - Probabilistic, DT - Decision Tree, LM - Linear Model, ANN - Artificial Neural
Network, CB - Case-based), application, data source, and type of evaluation.

Ref. Algor. Application Data Outcome

[391] ANN Femoral periphal arterial disease - Matching therapy

[263] ANN Acute lymphoblastic leukemia EHR Treatment outcome

[309] BN Ventilator-associated pneumonia - Matching therapy

[334] BN Dental treatment - Matching therapy

[324] BN Cancer - Treatment outcome

[84] BN Artrial fibrillation - no evaluation described

[154] BN Diabetes - Matching therapy

[208] BN Chemotherapy/ADE - Matching therapy

[207] BN Heart failure - Treatment outcome

[88] CB Dose planning EHR Matching therapy

[323] DT Cancer EHR no evaluation described

[352] DT Hypertension, Benign prostatic

hyperplasia

- Usability

[188] DT Subaxial cervical spine injury - no evaluation described

[216] DT Menopausal treatments - no evaluation described

[272] DT Medication safety - Matching therapy

[167] DT Heart failure EHR Matching therapy

[340] DT Cancer - Matching therapy

[304] GB Cardivascular disease risk EHR Guideline adherence

[101] GB Artherosclerotic risk EHR no evaluation described

[217] GB Regional anesthesia - Matching therapy

[130] GB Cardiac rehabilitation EHR no evaluation described

[98] GB Cancer EHR Matching therapy

[222] GB Chronic pain EHR Study not done yet

[290] GB Nosocomial infection LIMS Treatment outcome

[292] GB Depressive disorder EHR Treatment outcome

[58] GB Hyperlipidemia - Treatment outcome

[268] GB Hypertension - Cost reduction
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Appendix A - Literature Review

Ref. Algor. Application Data Outcome

[80] GB Tuberculosis - Guideline adherence

[354] GB Chronic pain EHR no evaluation described

[250] GB HIV EHR Matching therapy

[392] GB Coronary artery disease - Treatment outcome

[238] GB Medication safety EHR Guideline adherence

[8] LM Radiotherapy treatment - Matching therapy

[245] LM Medication safety - Matching therapy

[252] LM Aneurysm - Matching therapy

[137] LM Posttraumatic stress disorder - no evaluation described

[234] LM Acute ischaemic stroke - Study not done yet

[260] LM Reduced renal function - Treatment outcome

[201] LM/DT Prostate cancer EHR Matching therapy

[31] RB ADE - Contradicting

recommendations

[218] RB Cystitis - Matching therapy

[185] RB Heart failure EHR Matching therapy

[269] RB Medication safety - Cost reduction

[64] RB Warfarin treatment - no evaluation described

[328] RB Medication safety EHR Study not done yet

[32] RB Medication safety - Contradicting

recommendations

[183] RB ADE EHR Matching therapy

[279] RB Chronic kidney failure EHR no evaluation described

[144] RB Osteoporosis - Matching therapy

[268] RB Hypertension EHR Cost reduction

[11] RB Diabetes - no evaluation described

[244] RB Medication safety EHR Contradicting

recommendations
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Appendix B - Data

B.1 Treatment Describing Attributes
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Figure B.1: Effectiveness associated with applied therapies classified into good ( ), moderate
( ), bad ( ), or with missing outcome ( ).
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Figure B.2: ∆PASIrel associated with applied therapies. ∆PASIrel values range from PASI
improvement or controlling the disease ( ) to deterioration of the PASI ( ), or
with missing outcome ( ).
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Figure B.3: Observed occurrence ( ) and absence ( ) of ADEs associated with applied ther-
apies.
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Figure B.4: Distribution of therapy effectiveness (a) and ∆PASIrel, i.e. the relative change of
the PASI (b) provoked by applied therapies. ∆PASIrel before (left bars) and after
considering controlling therapies as having good outcome (right bars).
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Figure B.5: Distribution of observed ADEs (left) and affinity scores computed for all applied
therapies (right).
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B.2 Treatment History Attributes
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Figure B.6: Effectiveness associated with previously applied therapies classified into good ( ),
moderate ( ), bad ( ), or with missing outcome ( ).
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Figure B.7: Relative change of the PASI between two consecutive consultations, i.e. ∆PASIrel,
associated with previously applied therapies. ∆PASIrel values range from PASI
improvement or controlling the disease ( ) to deterioration of the PASI score
( ), or with missing outcome ( ).
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Figure B.8: Observed occurrence ( ) and absence ( ) of ADEs associated with previously
applied therapies.
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B.3 Therapy Options

Table B.1: List and categorization of therapy options applied in the provided data.

Drug Type

Topical Therapies

Vitamine-D-3/Vitamine-D-3-Analogs -

Topical Glucocorticosteroids (Class 1 or 2) -

Topical Glucocorticosteroids (Class 3 or 4) -

Combination Vitamine-D-3/Glucocorticosteroids -

Topical Retinoids -

Dithranol -

Other topical therapy -

Systemic Therapies

Acitretin Conventional

Apremilast Conventional

Cyclosporine Conventional

Fumaric acid esters Conventional

Methotrexate Conventional

Adalimumab (TNF-α antagonist) Biopharmaceutical

Etanercept (TNF-α antagonist) Biopharmaceutical

Golumimumab (TNF-α antagonist) Biopharmaceutical

Infliximab (TNF-α antagonist) Biopharmaceutical

Secukinumab (IL-17 antibody) Biopharmaceutical

Ustekinumab (IL-12/13 antibody) Biopharmaceutical

Combination

Acitretin/Etanercept Conventional/Biopharmaceutical

Acitretin/Ustekinumab Conventional/Biopharmaceutical

Acitretin/PUVA Conventional/Biopharmaceutical

Methotrexate/Adalimumab Conventional/Biopharmaceutical

Methotrexate/Etanercept Conventional/Biopharmaceutical

Methotrexate/Infliximab Conventional/Biopharmaceutical

Methotrexate/Secukinumab Conventional/Biopharmaceutical

Methotrexate/Ustekinumab Conventional/Biopharmaceutical

Methotrexate/Golumimumab Conventional/Biopharmaceutical

Other systemic therapy -

Phototherapies

PUVA -

Other UV therapy -
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B.4 Comorbidities

Table B.2: List and categorization of comorbidities recorded in the provided data.

Comorbidity Type

Arterial Hypertension Cardiovascular diseases

Cerebrovascular disease Cardiovascular diseases

Cardiac insufficiency Cardiovascular diseases

Condition after heart attack Cardiovascular diseases

Condition after stroke Cardiovascular diseases

Coronary heart disease Cardiovascular diseases

Lympho-/thrombopenia Cardiovascular diseases

Diabetes mellitus type 1 Metabolic diseases

Diabetes mellitus type 2 Metabolic diseases

Hyperuricaemia Metabolic diseases

Hyperlipidemia Metabolic diseases

Thyroid disease Metabolic diseases

Elevated transaminases Hepatic diseases

Hepatopathy Hepatic diseases

Gastritis/ulcer disease Gastrointestinal diseases

Morbus Crohn Gastrointestinal diseases

Colitis ulcerosa Gastrointestinal diseases

Lactose intolerance Gastrointestinal diseases

Renal insufficiency Renal diseases

Chronic bronchitis/COPD Pulmonary diseases

Latent tuberculosis Pulmonary diseases

Rheumatoid arthritis Rheumatic diseases

Depression Mental diseases/addictions

Smoker Mental diseases/addictions

EX-smoker Mental diseases/addictions

Alcohol abuse Mental diseases/addictions

Other mental disease Mental diseases/addictions

Asthma bronchiale Allergic diseases

Urticaria/angioedema Allergic diseases

Contact allergy Allergic diseases

Drug allergy Allergic diseases

Non-melanocytic skin cancer Cancer

Other malignant tumor Cancer

B-8 Dissertation Felix Magnus Gräßer



Appendix B - Data

B.5 Data Organization

Figure B.9: Psoriasis MariaDB® database structure (ERD)
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Appendix C - Dashboard

Figure C.1: Psoriasis therapy recommender system GUI: Recommendation dashboard. The pre-
dicted affinity scores for each therapy option after post filtering is visualized as
ordered bar chart. By selecting an option, summary statistics derived from the
local neighborhood of the target consultation are shown for each of the outcome
indicators. Moreover, brand names of original and biosimilars are shown for the
selected medication along with cost and dosage information.
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Appendix C - Dashboard

Figure C.2: Psoriasis therapy recommender system GUI: Patient and previous therapy data
presentation. Patient data, such as demographic data, diagnosis, comorbidities,
and clinical scores, as well as information on previous therapies and outcomes are
presented for the selected patient and consultation and are editable.
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Appendix D - Algorithm Comparison

Table D.1 summarizes qualitative advantages and disadvantages of the demonstrated algorithms

and algorithm variants.
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E.1 SHHS Test und Training Data

Table E.1: Train and test data partitioning.
Subject ID

Training 0, 1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 20, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33,
34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57,
58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 83,
84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
106, 107, 108, 110, 111, 116, 117, 118, 119, 121, 122, 123, 125, 128, 129, 130,
131, 132, 133, 134, 135, 136, 138, 139, 140, 142, 143, 144, 145, 146, 147, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
166, 168, 169, 171, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 184, 187,
188, 189, 190, 191, 192, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 207,
208, 209, 210, 212, 213, 214, 215, 216, 217, 219, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 236

Test 6, 9, 10, 15, 16, 18, 19, 24, 25, 30, 38, 45, 55, 60, 68, 73, 75, 82, 86, 93, 109, 112,
113, 114, 115, 120, 124, 126, 127, 137, 141, 148, 167, 170, 172, 182, 185, 186,
193, 204, 205, 206, 211, 218, 220, 221, 234, 235
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Table E.2: Subject mapping between utilized subject ID (ID) and SHHS subject ID (SHHS).
ID SHHS ID SHHS ID SHHS ID SHHS ID SHHS ID SHHS
0 200039 41 201218 82 203150 123 203737 164 204429 205 204846
1 200041 42 201276 83 203155 124 203791 165 204434 206 204861
2 200083 43 201309 84 203158 125 203801 166 204436 207 204881
3 200089 44 201351 85 203171 126 203824 167 204443 208 204894
4 200122 45 201411 86 203179 127 203851 168 204449 209 204895
5 200123 46 201413 87 203184 128 203856 169 204450 210 204910
6 200148 47 201423 88 203213 129 203925 170 204472 211 204912
7 200166 48 201426 89 203251 130 203942 171 204478 212 204916
8 200172 49 201441 90 203255 131 203952 172 204490 213 204922
9 200231 50 201553 91 203259 132 203995 173 204491 214 204927
10 200328 51 201654 92 203274 133 203998 174 204494 215 204929
11 200347 52 201687 93 203292 134 204027 175 204500 216 204937
12 200350 53 201694 94 203311 135 204028 176 204530 217 204952
13 200383 54 201834 95 203324 136 204035 177 204550 218 204960
14 200390 55 201906 96 203330 137 204041 178 204553 219 204963
15 200405 56 202000 97 203333 138 204042 179 204559 220 204985
16 200413 57 202039 98 203350 139 204058 180 204560 221 204995
17 200485 58 202041 99 203375 140 204084 181 204562 222 205011
18 200555 59 202058 100 203384 141 204089 182 204576 223 205060
19 200586 60 202116 101 203386 142 204115 183 204603 224 205069
20 200592 61 202185 102 203442 143 204134 184 204614 225 205083
21 200596 62 202255 103 203457 144 204135 185 204631 226 205116
22 200620 63 202267 104 203476 145 204166 186 204632 227 205146
23 200644 64 202433 105 203478 146 204171 187 204638 228 205152
24 200661 65 202503 106 203483 147 204176 188 204657 229 205177
25 200678 66 202658 107 203488 148 204190 189 204722 230 205232
26 200750 67 202847 108 203512 149 204233 190 204729 231 205276
27 200774 68 202949 109 203523 150 204237 191 204735 232 205285
28 200818 69 202957 110 203533 151 204292 192 204749 233 205295
29 200880 70 202963 111 203554 152 204298 193 204769 234 205311
30 200884 71 202986 112 203561 153 204299 194 204772 235 205328
31 200887 72 202994 113 203599 154 204307 195 204774 236 205383
32 200891 73 203311 114 204326 155 204326 196 204777
33 200954 74 203324 115 204338 156 204338 197 204778
34 200955 75 203330 116 204365 157 204365 198 204781
35 201042 76 203333 117 204368 158 204368 199 204785
36 201066 77 203350 118 204388 159 204388 200 204789
37 201067 78 203375 119 204412 160 204412 201 204814
38 201079 79 203384 120 204413 161 204413 202 204818
39 201210 80 203386 121 204419 162 204419 203 204831
40 201218 81 203442 122 204429 163 204429 204 204846
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Appendix F - Fundamentals

F.1 Decision Trees

F.1.1 Decision Tree Induction

To measure the purity or homogeneity of a collection of training samples S the Shannon entropy

H(S) can be employed which is defined as

H(S) = −
∑

y∈Y

p(y|S) · log2 p(y|S) (F.1)

where p(y|S) is the proportion of S belonging to class y. Suchlike, the information gain

IG(Si, A), which origins from information theory, can be calculated as splitting criterion. Inform-

ation gain measures how well a given attribute A splits the proportion of training observations

Si reaching node i, i.e. how well a split reduces entropy and increases homogeneity. Information

gain, also denoted as mutual information, was initially proposed in [275] as splitting criterion

for the ID3 algorithm (Iterative Dichotomizer) and is defined as

IG(Si, A) = H(Si) −
∑

j∈J

|Sj
i |

|Si|
H(Sj

i ) (F.2)

with the possible nominal categories j of A yielding the subset Sj
i . Depending on the number

of resulting branches, i.e. categories, the algorithm creates a multiway tree which tries to find

for each node the attribute yielding the largest information gain. [226, 275]

The ID3 induction process either terminates if all attributes were already selected in a path or

if all training examples in a node are member of the same class, i.e. the entropy is zero. The

empirical class distribution from the training process are stored for each terminal leaf. Suchlike,

for each sample to be classified a probabilistic class membership can be determined. [226, 275]

The information gain described above suffers from the drawback of favoring attributes with a

large number of possible categories. To reduce this bias the normalized version of the information

gain, the information gain ratio, takes number and size of branches into account resulting in

IGR(Si, A) = IG(Si, A) ·



−
∑

j∈J

|Sj
i |

|Si|
· log2

|Sj
i |

|Si|





−1

(F.3)

Information gain ratio was proposed in [276] which describes the C4.5 algorithms, the successor

of ID3. C4.5 incorporates numerous improvements as described below. One major difference
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is that in contrast to its predecessor, C4.5 is capable of not only handling qualitative but also

quantitative attributes. During the induction process, a dynamically determined threshold par-

titions the quantitative attribute into a discrete set of intervals [276]. In contrast to qualitative

attributes which are tested at most once on any path in the tree, quantitative attributes may

be tested several times with different thresholds.

Finally, the CART algorithm proposed in [37] is a decision tree learning technique that facilitates

both, creation of either classification or regression trees, depending on whether the dependent

variable is categorical or continuous, respectively. Comparable to C4.5, CART supports both

qualitative and quantitative attributes.

For categorical labels CART implements the Gini index to measure the impurity or inhomogen-

eity of a collection of training samples S

Gini(Si) = 1 −
∑

y∈Y

P (y|Si)2 (F.4)

where P (y|S) is the proportion of S belonging to class y. The Gini index can be interpreted

as the probability to incorrectly label a random sample from the distribution. Consequently,

attributes and thresholds which maximize Gini index reduction are selected for the current node.

The resulting splitting criterion can be defined as

GiniGain(Si, A) = Gini(Si) −
∑

j∈J

|Sj
i |

|Si|
Gini(Sj

i ) (F.5)

In contrast to ID3 and C4.5, where qualitative variables with more than two categories lead to

multiway splits, the CART algorithm creates binary splits, i.e. each internal node has exactly

two outgoing edges. Therefore, multiple categories are divided into two disjoint groups which

best improve the splitting criterion. Multiway splits result in broader trees. However, they can

suffer from the drawback to fragment the data too quickly which results in insufficient data

succeeding the node [149].

As for classification tree induction, also when building a regression tree the objective is to select

attributes and thresholds such that a splitting criterion is minimized. However, this criterion

must reflect the numeric deviation from the continuous target value. The CART algorithm uses

the squared error of each potential split to determine the best splitting option.

To terminate the decision tree induction process, various stop criteria are described. The

learning phase can be terminated if all attributes were selected in a path or if all training

examples in a node are member of the same class, i.e. the entropy is zero [226, 275]. However,

additionally criteria such as the maximum tree depth, i.e. the path length from the root node

to a leaf node, the maximum number of decision splits, i.e. branch nodes, the minimum number

of observations in a parent node to perform further splits, the minimum number of observations

in resulting leafs or a splitting criterion threshold can be defined to further control the specific

structure of a grown decision tree.[291]

Finally, the empirical class distribution from the training process are stored for each leaf.
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Suchlike, for each sample to be classified a probabilistic class membership can be determined

[226, 275]. In case of a regression task, the actual prediction value for each leaf is the weighted

mean of the training data stored in the respective leaf.

F.1.2 Decision Tree Missing Values

Both C4.5 and CART are capable of handling missing values in an attribute vector. In case of

C4.5, observations reaching an internal node, for which an attribute is unknown, are sent into

each branch. However, the observation is weighted, i.e partitioned, with the proportion in which

the training observations (for which the attribute was known) were split at this respective node.

Determining the information gain during tree induction is also valid with weighted observations.

During classification of a new observation the weights are incorporated into the computation of

the classification probability at the respective leaf node. [226, 384]

The CART algorithm uses the concept of surrogate splits for handling missing values. During

training, a primary splitting attribute and threshold is determined on observations where the

respective attribute is not missing. From all training observations, for which the splitting attrib-

ute is missing, a list of surrogate attributes and thresholds are determined, which is sorted by

their capability to mimic the primary split. The underlying intention is to exploit the correlation

between variables to diminish the impact of missing variables. [149].

F.1.3 Decision Tree Pruning

A notable issue with decision trees is their tendency to overfitting. If trees are grown too deeply,

branches develop that only represent outliers or noise instead of concepts inherent to the data.

In order to tackle this overfitting problem pre- or post-pruning strategies are employed. Pre-

pruning, on the one hand, means parameterizing stopping criteria to the problem at hand as

prescribed above requiring additional validation data. Post-pruning, on the other hand, does not

require any additional data. CART and C4.5 provide a bottom-up post-pruning method replace

internal nodes with leaf nodes or to raise subtrees. The decision whether to replace or remove

a node is based on the comparison of the expected errors occurring at the respective node and

its successors. The assumed true class for each of the internal and leaf nodes is the majority

class from the training data reaching that node. Thus, the expected error is computed as the

misclassification rate at each node but using the upper-bound of a given confidence interval to

derive a more pessimistic error estimate. The expected standard deviation is computed assuming

a binomial distribution of the occurring error. [226, 384]

F.1.4 Decision Tree Ensembles

F.1.5 Bagging

One of the earliest methods to generate classifier ensembles introduced in [39] is bagging (boot-

strap aggregating). To facilitate diversity when training individual classifiers, varying subsets

of the training data are employed to build up each single model. Subsets of equal size are boot-
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strap sampled. The output of the individual classifiers are aggregated using plurality vote for

classification or averaging when predicting numerical outcomes, respectively.

A variation of bagging, so called RF introduced in [41], use randomly varying and uncorrelated

DTs as base learner to construct an ensemble model (algorithm 2). The underlying intuition

was to reduce the variance of the individual decision trees by averaging their outputs [271, 149].

Here, a popular approach is to use bootstrap samples of the dataset and additionally increase

diversity and decrease correlation among the individual trees by using random subspaces only,

i.e. randomly chosen features, at each node when inducing the base learner. However, any

ensemble of DTs each grown with respect to independent and identically distributed random

vectors are defined as RF [190, 41].

Bagging of DTs comes along with a noteworthy feature. Already during classifier training an

error estimate, the so called out-of-bag error, can be determined to assess the classifier quality.

Therefore, for each base learner the misclassification rate is computed using all samples not used

for training, i.e. the out-of-bag observations. Those error estimates are finally averaged over all

base learner and can render a hold-out validation set for hyperparameter tuning unnecessary.

RFs are applied in chapter 7 in the context of sleep stage classification and PD patient

classification.

Algorithm 2: Random Forest
Procedure: Training
Input : Training data S = {(xn, yn)}N

n=1 of size N
number of base learner M
fraction f to be drawn from S at each iteration with replacement
fraction p of attributes to be drawn at each split

Output : Ensemble model F (x)

for m = 1...M do
randomly draw fraction f from S, i.e. bootstrap sample Sm;
fit base learner to all y from Sm yielding hm(x), only use random fraction p of
features at each split;

update model: F (x) = Fm−1(x) + hm(x);
end

Procedure: Classification
Input : Data sample x

Ensemble model F (x)
Output : Prediction ŷ

for m = 1...M do
classify x using hm(x) yielding ŷm;

end
do majority voting over all ŷm to determine ŷ
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F.1.6 Boosting

In [303] it was shown that any weak learner, i.e. classification or regression models performing

only marginally better than random guessing having an error rate less than 0.5, can be “boos-

ted” to a strong learner. Boosting is considered as one of the most powerful classification and

regression approaches introduced in the recent years [149]. In case of classification, analogously

to bagging, an ensemble of models is created by combining base learner, trained on resampled

versions of the training data. However, in case of boosting the individual classifiers are incre-

mentally added and, in contrast to random samples, trained with the most informative, i.e. most

difficult data samples, at each iteration. Suchlike, base learners are combined which compliment

each another and are specialized to a specific domain of the data space. Finally, when combining

the base learner, each contribution is weighted by its confidence instead of giving equal weight

as in case of bagging. [190, 271, 149, 384]

One of the most widely used boosting algorithms is AdaBoost (Adaptive Boosting), which

was introduced in [114, 115] and is described in algorithm 3. Here, the individual base learner

are generated by drawing samples from an iteratively updated training data distribution. This

distribution update increases the likelihood of instances to be included in the training data of

a next learner if they were misclassified by the previous one. Suchlike, the algorithm focuses on

increasingly difficult instances with each iteration. Also when computing the misclassification

rate, the likelihood of the individual samples are taken into account. To ensure the boosting

effect, only classifiers having a misclassification rate below 0.5 are added to the ensemble and

are discarded otherwise. During actual classification of unseen samples a weighted majority

voting scheme is applied. Base learner having shown good training performance have more

impact, i.e. are given higher weights relative to their classification performance during training.

Hyperparamters such as the optimal number of iterations M must be determined using cross

validation or a disjunct validation data set.

AdaBoost and related boosting algorithms were converted into a generalized, framework [38, 40,

116, 117] and finally denoted as GBM. Here, boosting is considered as a numerical optimization

problem with the objective to minimize the overall error of the model. Therefore, specialized

base learner (weak learner) are added incrementally to the ensemble using a GD like approach.

The generic framework allows to apply arbitrary differentiable objective functions L(y, F (x))

and any parameterizable classifiers F (x) as base learner. However, regression trees are applied

very commonly using squared error L(y, F (x)) = 1
2(y − F (x))2 as objective function. Suchlike,

the residuals rm = y − F (x) of a model m can be interpreted as negative gradients. However,

any objective function derivation can be inserted into the algorithm as pseudo-residual. In each

iteration the overall model is updated with a base learner hm(x) fitted to the residuals rm

yielding Fm(x) = Fm−1(x) + γmhm(x). Analogously to AdaBoost, a weighted majority voting

scheme is applied during actual classification or regression. Here, the weighting coefficient γm

is typically also optimized by solving one-dimensional line search optimization problem. As in

case of AdaBoost a stopping criterion, such as a data specific fixed number of iterations M or a

loss threshold must be determined using cross validation or validation data.
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Algorithm 3: AdaBoost
Procedure: Training
Input : Training data S = {(xn, yn)}N

n=1 of size N
number of base learner M
fraction f to be drawn from data distribution at each iteration

Initialize : Distribution D0(n) = 1
N , for n = 1...N

Output : Ensemble model F (x)

for m = 1...M do
randomly draw fraction f from distribution Dm, i.e. sample Sm;
fit base learner to all y from Sm yielding hm(x);
calculate error of hm(x): ǫm =

∑

n:hm(xn) 6=yn
Dm(n) from all (x, y) ∈ Sm;

if ǫm > 0.5 then
abort;

else
compute coefficient βm = ǫm

1−ǫm
;

update distribution Dm: Dm+1(n) = Dm(n)
|Dm| ×

{

βm if hm(xn) = yi

0 otherwise
;

update model: F (x) = Fm−1(x) + log 1
βm

hm(x);

end

end

Procedure: Classification
Input : Data sample x

Ensemble model F (x)
Output : Prediction ŷ

for m = 1...M do
classify x using hm(x) yielding ŷm;

end
do majority voting over all ŷm to determine ŷ. Weight each classifier contribution using
wm = log 1

βm
;

Various improvements, especially to tackle overfitting, were added to the initial GBM frame-

work. By weighting the contribution of each base learner using a shrinkage parameter or learning

rate µ, the influence of the individual base learner is reduced and, as a consequence, learning

speed decreases and the optimal number of classifiers increases [117]. Also training the base

learner on a subsample of the training data only (Stochastic Gradient Boosting), which is chosen

randomly without replacement at each iteration [118] or other sampling or feature subspace

selection schemes, often improve accuracy. Furthermore, considering the numeric values in the

leaf nodes of a regression tree as weights, regularization of those parameters by means of L1-

or L2-norm have proven to additionally improve performance (Regularized Gradient Boosting)

[62]. This algorithm is applied in the model-based CF setting in section 5.5 to predict treatment

outcome and derive recommendations.

F-6 Dissertation Felix Magnus Gräßer



Appendix F - Fundamentals

Algorithm 4: Gradient Boosting Machine (GBM)
Procedure: Training
Input : Training data S = {(xn, yn)}N

n=1 of size N
number of base learner M
differentiable objective function L(y, F (x))

Output : Ensemble model F (x)
Initialize : Initial model with constant value γ: F0(x) = arg min

γ

∑N
n=1 L(yn, γ)

for m = 1...M do

compute pseudo-residuals: rnm =
[

∂L(yn,F (xn))
∂F (xn)

]

F (x)=Fm−1(x)
, for n = 1...N ;

fit base learner to all pseudo-residuals rm, i.e. train on all (X, rm) yielding hm(x);

compute coefficient γm: γm = arg min
γ

∑N
n=1 L(yn, Fm−1(xn) + γhm(xn));

update model: Fm(x) = Fm−1(x) + γmhm(x);
end

Procedure: Classification
Input : Data sample x

Ensemble model F (x)
Output : Prediction ŷ

for m = 1...M do
classify x using hm(x) yielding ŷm;

end
do majority voting over all ŷm to determine ŷ. Weight each classifier contribution using
wm = γm;

F.1.7 Decision Tree Ensemble Interpretability

As stated in 3.3.2, single DTs are characterized by good interpretability. The generated model

can be visualized by a two-dimensional graphic or described as a set of if-then rules, however,

often suffer from overfitting and inaccuracy. Linear combination strategies of trees as bagging

and boosting are capable of significantly improve classification accuracy, however, at the expense

of some analyzing and interpretation capabilities.

Nevertheless, one insight into the decision making process, which can be derived, are estimates

of average attribute importance. The cumulated improvements of the split-criterion at each

split can be regarded as measure of relevance associated to the splitting variable. Those values

can finally be averaged over all trees yielding reliable overall attribute importance estimates.

However, two properties of this importance measure must be kept in mind. In case of correlated

attributes, usually only one attribute is rewarded with high importance whereas the correlated

attribute will end up with low scores. Additionally, the attribute importance of categorical

attributes is typically biased towards variables with many categories.

Furthermore, ensembles of classification models typically not only return a majority class only

but also the support for a given class. This numeric value can be interpreted as some probability
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measure and used for ranking of different classifier outputs. Hence, those models are practicable

for RS applications which provide ranked lists of recommendations.

Various approaches are proposed in the literature which aim at mimicking an overall better

performing but complex model, e.g. neural networks [394, 46, 72, 348] or ensembles of DTs

[91], by training a more compact and less complex surrogate model, e.g. linear models or DTs.

Suchlike, not only the reduction of processing time and space requirements can be facilitated, but

also the level of interpretability can be increased. All of those approaches have in common that

no information about the inner workings of the underlying complex model is required (model-

agnostic interpretation methods [230]). Furthermore, all algorithms use the labels predicted by

the complex ensemble model (teacher), to train a simpler surrogate model (student model).

Such surrogate models can be global, but also local interpretable surrogate model approaches ar

proposed in the literature which aim at explaining the complex models predictions of individual

target instances (LIME [287], MAPLE [270]). To do so, less complex and interpretable surrogate

models, which approximate the complex model, are trained on data from the neighborhood of

a target instance only.
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F.2 Matrix Factorization

The basic ideas concerning MF algorithms derive from Latent Semantic Indexing (LSI) for

document comparison [83, 300, 299]. By transforming a document representations to a lower

rank approximation, also denoted as word embedding, LSI was intended to reveal latent concepts

contained in documents.

In the CF setting, the same approach can be applied to the n rank user-item feedback matrix

R. Here, MF approaches aim at mapping the user representations in R, i.e. the explicit or

implicit feedback of user u on items i, to a joint lower-dimensional space by capturing their

most important latent factors [182]. As R typically comprises a large number of correlations

among users and items, i.e. inherent redundancy, a good approximation R̂ can be achieved with

rank k << n, i.e. by only retaining the most important dimensions [288, 4].

Such latent factor models are closely related to Singular Value Decomposition (SVD) using the

Eigendecomposition which factorizes R into the three matrices

R = UΣVT (F.6)

where U is the |U| × n matrix of left singular vectors, V is the |I| × n matrix of right singular

vectors and Σ is the n × n diagonal matrix of ordered singular values of R. Here, the left

singular vectors can be interpreted as latent user features whereas the right singular vectors can

be interpreted as latent item features. [300, 299]

If only a subset of the k largest singular values of Σ are used, a lower-dimensional approximation

R̂ = UkΣkVT
k of R using only the largest singular values in Σk along with the corresponding

singular vectors Uk and Vk can be obtained.

However, when factorizing the user-item feedback matrix R in a CF application, sparsity

raises difficulties as conventional SVD is undefined when the matrix is incomplete. One solution

is to assign default values, e.g. the mean of the corresponding row or column to missing entries

[169, 300]. However, this approach significantly increases the computational load and is likely

to introduce a considerable bias to the data due to inappropriate imputation.

Several works suggest to model a factorization R = PQ by only using the observed entries

of R directly [27, 52, 181, 259, 347]. Due to the inherent redundancies in the data, the fully

specified low-rank approximation assumed to be determined even with a small subset of the

entries in the original matrix only [4]. The factor vectors are typically learned from previously

observed implicit or explicit feedback by minimizing an objective function L(P, Q) such as the

squared entry-wise L2-norm (Frobenius-norm) of the approximation error on the known feedback

L(P, Q) = ||R − PQT ||22 =
∑

u,i

(rui − puqi)
2 (F.7)

Several optimization algorithms are proposed in the literature for minimizing the objective func-

tion. Typically, GD or SGD are applied. However, there are also more specialized optimization

methods as Alternating Least Squares (ALS). As the defined objective function L(·) is convex

for P or Q, only but not in both variables together, ALS optimizes pu and qi in an alternating
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fashion to transform the overall optimization problem into a convex and hence optimally solvable

problem.

Regularization, which penalizes large coefficients in P and Q, has been shown to be essential

to address overfitting and improve generalization capabilities [4, 182, 288]. Here, typically the

entry-wise L2-norms of P and Q are added to the objective function.

L(P, Q) =
∑

u,i

(rui − puqi)
2 + λ(||pu||22 + ||qi||

2
2) (F.8)

which are controlled with the regularization parameter λ [182, 288]. Numerous MF algorithms

have been developed within the recent years. Even though latent vectors represent dominant

correlation patterns in R, the individual latent features typically become hardly interpretable.

One specialized factorization methods intended to cope with this issue is Non-negative Matrix

Factorization (NMF) [397]. This approach is especially useful in applications where feedback

comprises positive values only. Therefore, an additional constraint is induced to the optimization

function in equation F.8 which forces the factors in P and Q to be non-negative: P ≥ 0, Q ≥ 0.

Suchlike, no subtractions are involved when computing R̂ by multiplying the resulting matrices

P and Q.

Based on MF, similarity can be computed between user representations pu comparable to the

traditional memory-based CF. Using those fully specified vectors representing users pu, more

robust and, due to the lower dimensionality of the vectors, more efficient similarity computations

are yielded [288]. A further approach to model the feedback prediction rui a user u gives on an

item i is the even more efficient way to compute the inner products of user representations pu

and item representations qi in the transformed space [182, 345].

Comparing both, traditional memory-based CF methods with techniques employing MF, the

first methods are more intuitive and explainable. However, factorization techniques improve

scalability and efficiency. Moreover, as the resulting latent factors can be considered as the

extent of interest a user has in an item and to which an item possesses the latent factors, MF

approaches bear the additional potential to reveal meaningful relations between pairs of users

or items which are otherwise unknown [182].
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F.3 Missing Value Imputation

(a) Complete-case analysis, also denoted as listwise deletion: Instances containing missing values

are simply discarded. Assuming the data to be MCAR, suchlike no data errors are introduced

and data is kept reliable. Though, reducing the dataset is subject to an overall loss of information

which affects the statistical power and generalizability of further analyses [262].

(b) Single value imputation: Imputation of single value estimates at places of missing data in

order to make most of the available data. Depending on the proportion of the missing values

and the further analyses, this approach is prone to introduce noise into the data and cause bias

or false classification results if not applied appropriately [241, 262].

A straightforward statistical approach for missing categorical attributes is imputation of the

most frequently occurring, i.e. the mode of the available values. This approach is especially

justifiable in case of very unbalanced distributions. However, also values based on domain

knowledge can be imputed. In case of numeric attributes, mean or median imputation are

basic methods, however, at the expense of under-representation of data variability and ignored

correlation between attributes. [173]

These imputation approaches can be further extended to the imputation of mode, mean, median

or domain knowledge values conditional to other attributes or the class of a data instance.

(c) K nearest neighbors imputation: The K most similar instances based on the known attrib-

utes are identified and mean, mode or median is computed from this neighborhood only. The

applied distance measure and the selected number of neighbors K are key issues determining

this imputation method. Moreover, this method requires sufficient data for reliable attribute

modeling. [22, 266]

(d) Hot deck imputation: Considers only the most similar neighbor, a random valid value

from the local neighborhood, or a single value based on another criterion [241, 173]. Hot deck

imputation is a simple and widely used approach which is also proposed by [266] for patient data.

However, this approach may suffer from the shortcoming that global properties are ignored when

determining the imputation value [241].

(e) Multiple imputation: Missing values are replaced with a set of plausible but different

versions of that attribute in order to maintain the variability of the missing values. In the

following, either the average value is used or multiple versions of the dataset are available for

further analysis. Suchlike, in contrast to single value imputation, uncertainty accompanied with

data imputation is accounted for. Multiple imputation is recognized as the standard method to

deal with missing data in many areas of research. [164, 294, 262]

(f) Last Observation Carried Forward (LOCF): In case of sequential or time-series data, every

missing value is replaced with the last observed value from the same subject. This method

strongly assumes the values to remain unchanged and may underestimate the variability of the

data. [164]

(g) Interpolation or Curve fitting: Also interpolation or curve fitting methods can be applied

to estimate missing values in a sequence of continuous attributes. Curve fitting also has, to a

limited extend, the potential to even extrapolate missing values to previous or future time points.
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Adjacency-based imputation proposed by [10] for patient data sequences use linear interpolation

to fill missing values between two known values and prior or posterior values for extrapolation.

Those approaches require sufficient data points preceding or succeeding a missing entry.

(h) Missing indicator : An additional missing category for qualitative attributes and a fixed

dummy value for quantitative attributes is imputed. This method is popular as it obtains the

full dataset. However, even with few missing values and under the MCAR assumption this

method is assumed to be subject to bias [262].

There are various more sophisticated imputation approaches proposed to estimate missing

values, such as modeling the multivariate attribute distribution, exploiting correlations among

attributes by training a regression model, or employing further machine learning-based proced-

ures to build predictive models for value estimation. However, all of them rely on sufficient

training data for attribute modeling. [173, 369, 359, 266, 241, 24]

Missing value analysis, i.e. the problem of imputing missing values in an incompletely specified

data matrix is closely related to methods from RS research such as CF detailed in chapter 3.

Many methods proposed in the related literature can also be applied for RSs and RS meth-

ods, such as latent factor models, were studied in the context of missing value analysis prior to

application in RS [4].
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