28 research outputs found

    To infinity and beyond: Strategies for fabricating medicines in outer space

    Get PDF
    Recent advancements in next generation spacecrafts have reignited public excitement over life beyond Earth. However, to safeguard the health and safety of humans in the hostile environment of space, innovation in pharmaceutical manufacturing and drug delivery deserves urgent attention. In this review/commentary, the current state of medicines provision in space is explored, accompanied by a forward look on the future of pharmaceutical manufacturing in outer space. The hazards associated with spaceflight, and their corresponding medical problems, are first briefly discussed. Subsequently, the infeasibility of present-day medicines provision systems for supporting deep space exploration is examined. The existing knowledge gaps on the altered clinical effects of medicines in space are evaluated, and suggestions are provided on how clinical trials in space might be conducted. An envisioned model of on-site production and delivery of medicines in space is proposed, referencing emerging technologies (e.g. Chemputing, synthetic biology, and 3D printing) being developed on Earth that may be adapted for extra-terrestrial use. This review concludes with a critical analysis on the regulatory considerations necessary to facilitate the adoption of these technologies and proposes a framework by which these may be enforced. In doing so, this commentary aims to instigate discussions on the pharmaceutical needs of deep space exploration, and strategies on how these may be met

    Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design

    Get PDF
    Since their introduction, chewable dosage forms have gained traction due to their ability to facilitate swallowing, especially in paediatric, geriatric and dysphagia patients. Their benefits stretch beyond human use to also include veterinary applications, improving administration and palatability in different animal species. Despite their advantages, current chewable formulations do not account for individualised dosing and palatability preferences. In light of this, three-dimensional (3D) printing, and in particular the semi-solid extrusion technology, has been suggested as a novel manufacturing method for producing customised chewable dosage forms. This advanced approach offers flexibility for selecting patient-specific doses, excipients, and organoleptic properties, which are critical for ensuring efficacy, safety and adherence to the treatment. This review provides an overview of the latest advancements in chewable dosage forms for human and veterinary use, highlighting the motivations behind their use and covering formulation considerations, as well as regulatory aspects

    Advancing non-destructive analysis of 3D printed medicines

    Get PDF
    Pharmaceutical 3D printing (3DP) has attracted significant interest over the past decade for its ability to produce personalised medicines on demand. However, current quality control (QC) requirements for traditional large-scale pharmaceutical manufacturing are irreconcilable with the production offered by 3DP. The US Food and Drug Administration (FDA) and the UK Medicines and Healthcare Products Regulatory Agency (MHRA) have recently published documents supporting the implementation of 3DP for point-of-care (PoC) manufacturing along with regulatory hurdles. The importance of process analytical technology (PAT) and non-destructive analytical tools in translating pharmaceutical 3DP has experienced a surge in recognition. This review seeks to highlight the most recent research on non-destructive pharmaceutical 3DP analysis, while also proposing plausible QC systems that complement the pharmaceutical 3DP workflow. In closing, outstanding challenges in integrating these analytical tools into pharmaceutical 3DP workflows are discussed

    Prediction of Solid-State Form of SLS 3D Printed Medicines Using NIR and Raman Spectroscopy

    Get PDF
    Selective laser sintering (SLS) 3D printing is capable of revolutionising pharmaceutical manufacturing, by producing amorphous solid dispersions in a one-step manufacturing process. Here, 3D-printed formulations loaded with a model BCS class II drug (20% w/w itraconazole) and three grades of hydroxypropyl cellulose (HPC) polymer (-SSL, -SL and -L) were produced using SLS 3D printing. Interestingly, the polymers with higher molecular weights (HPC-L and -SL) were found to undergo a uniform sintering process, attributed to the better powder flow characteristics, compared with the lower molecular weight grade (HPC-SSL). XRPD analyses found that the SLS 3D printing process resulted in amorphous conversion of itraconazole for all three polymers, with HPC-SSL retaining a small amount of crystallinity on the drug product surface. The use of process analytical technologies (PAT), including near infrared (NIR) and Raman spectroscopy, was evaluated, to predict the amorphous content, qualitatively and quantitatively, within itraconazole-loaded formulations. Calibration models were developed using partial least squares (PLS) regression, which successfully predicted amorphous content across the range of 0–20% w/w. The models demonstrated excellent linearity (R^{2} = 0.998 and 0.998) and accuracy (RMSEP = 1.04% and 0.63%) for NIR and Raman spectroscopy models, respectively. Overall, this article demonstrates the feasibility of SLS 3D printing to produce solid dispersions containing a BCS II drug, and the potential for NIR and Raman spectroscopy to quantify amorphous content as a non-destructive quality control measure at the point-of-care

    Inkjet Printing of Pharmaceuticals

    Get PDF
    © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC), https://creativecommons.org/licenses/by-nc/4.0/Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.Peer reviewe

    Printing Drugs onto Nails for Effective Treatment of Onychomycosis

    Get PDF
    Inkjet printing (IJP) is an emerging technology for the precision dosing of medicines. We report, for the first time, the printing of the antifungal drug terbinafine hydrochloride directly onto nails for the treatment of onychomycosis. A commercial cosmetic nail printer was modified by removing the ink from the cartridge and replacing it with an in-house prepared drug-loaded ink. The drug-loaded ink was designed so that it was comparable to the commercial ink for key printability properties. Linear drug dosing was shown by changing the lightness of the colour selected for printing (R2 = 0.977) and by printing multiple times (R2 = 0.989). The drug loads were measured for heart (271 µg), world (205 µg) and football (133 µg) shapes. A disc diffusion assay against Trpytophan rubrum showed inhibition of fungal growth with printed-on discs. In vitro testing with human nails showed substantial inhibition with printed-on nails. Hence, this is the first study to demonstrate the ability of a nail printer for drug delivery, thereby confirming its potential for onychomycosis treatment

    3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics

    Get PDF
    YesThree dimensional printing (3DP) was used to engineer novel oral drug delivery devices, with specialised design configurations loaded with multiple actives, with applications in personalised medicine. A filament extruder was used to obtain drug-loaded - paracetamol (acetaminophen) or caffeine - filaments of polyvinyl alcohol with characteristics suitable for use in fused-deposition modelling 3D printing. A multi-nozzle 3D printer enabled fabrication of capsule-shaped solid devices, containing paracetamol and caffeine, with different internal structures. The design configurations included a multilayer device, with each layer containing drug, whose identity was different from the drug in the adjacent layers; and a two-compartment device comprising a caplet embedded within a larger caplet (DuoCaplet), with each compartment containing a different drug. Raman spectroscopy was used to collect 2-dimensional hyper spectral arrays across the entire surface of the devices. Processing of the arrays using direct classical least squares component matching to produce false colour representations of distribution of the drugs showed clearly the areas that contain paracetamol and caffeine, and that there is a definitive separation between the drug layers. Drug release tests in biorelevant media showed unique drug release profiles dependent on the macrostructure of the devices. In the case of the multilayer devices, release of both drugs was simultaneous and independent of drug solubility. With the DuoCaplet design it was possible to engineer either rapid drug release or delayed release by selecting the site of incorporation of the drug in the device, and the lag-time for release from the internal compartment was dependent on the characteristics of the external layer. The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design configurations and unique drug release characteristics, which would not otherwise be possible using conventional manufacturing methods.The full-text of this article will be released for public view at the end of the publisher embargo on 10 Oct 2016

    3D Printing of Dietary Products for the Management of Inborn Errors of Intermediary Metabolism in Pediatric Populations

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6–10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence. Furthermore, frequent dose adjustments contingent on age and drug blood levels further complicate treatment. Semi-solid extrusion (SSE) 3D printing technology is currently under assessment as a pioneering method for crafting customized chewable dosage forms, surmounting the primary limitations prevalent in present therapies. This method offers a spectrum of advantages, including the flexibility to tailor patient-specific doses, excipients, and organoleptic properties. These elements are pivotal in ensuring the treatment’s efficacy, safety, and adherence. This comprehensive review presents the current landscape of available dietary products, diagnostic methods, therapeutic monitoring, and the latest advancements in SSE technology. It highlights the rationale underpinning their adoption while addressing regulatory aspects imperative for their seamless integration into clinical practice.Peer reviewe

    Visualizing disintegration of 3D printed tablets in humans using MRI and comparison with in vitro data

    Get PDF
    Three-dimensional (3D) printing is revolutionising the way that medicines are manufactured today, paving the way towards more personalised medicine. However, there is limited in vivo data on 3D printed dosage forms, and no studies to date have been performed investigating the intestinal behaviour of these drug products in humans, hindering the complete translation of 3D printed medications into clinical practice. Furthermore, it is unknown whether conventional in vitro release tests can accurately predict the in vivo performance of 3D printed formulations in humans. In this study, selective laser sintering (SLS) 3D printing technology has been used to produce two placebo torus-shaped tablets (printlets) using different laser scanning speeds. The printlets were administered to 6 human volunteers, and in vivo disintegration times were assessed using magnetic resonance imaging (MRI). In vitro disintegration tests were performed using a standard USP disintegration apparatus, as well as an alternative method based on the use of reduced media volume and minimal agitation. Printlets fabricated at a laser scanning speed of 90 mm/s exhibited an average in vitro disintegration time of 7.2 ± 1 min (measured using the USP apparatus) and 25.5 ± 4.1 min (measured using the alternative method). In contrast, printlets manufactured at a higher laser scanning speed of 130 mm/s had an in vitro disintegration time of 2.8 ± 0.8 min (USP apparatus) and 18.8 ± 1.9 min (alternative method). When tested in humans, printlets fabricated at a laser scanning speed of 90 mm/s showed an average disintegration time of 17.3 ± 7.2 min, while those manufactured at a laser scanning speed of 130 mm/s exhibited a shorter disintegration time of 12.7 ± 6.8 min. Although the disintegration times obtained using the alternative method more closely resembled those obtained in vivo, no clear correlation was observed between the in vitro and in vivo disintegration times, highlighting the need to develop better in vitro methodology for 3D printed drug products

    Supramolecular chemistry enables vat photopolymerization 3D printing of novel water-soluble tablets

    Get PDF
    Vat photopolymerization has garnered interest from pharmaceutical researchers for the fabrication of personalised medicines, especially for drugs that require high precision dosing or are heat labile. However, the 3D printed structures created thus far have been insoluble, limiting printable dosage forms to sustained-release systems or drug-eluting medical devices which do not require dissolution of the printed matrix. Resins that produce water-soluble structures will enable more versatile drug release profiles and expand potential applications. To achieve this, instead of employing cross-linking chemistry to fabricate matrices, supramolecular chemistry may be used to impart dynamic interaction between polymer chains. In this study, water-soluble drug-loaded printlets (3D printed tablets) are fabricated via digital light processing (DLP) 3DP for the first time. Six formulations with varying ratios of an electrolyte acrylate monomer, [2-(acryloyloxy)ethyl]trimethylammonium chloride (TMAEA), and a co-monomer, 1-vinyl-2-pyrrolidone (NVP), were prepared to produce paracetamol-loaded printlets. 1H NMR spectroscopy analysis confirmed the integration of TMAEA and NVP in the polymer, and residual TMAEA monomers were found to be present only in trace amounts (0.71 - 1.37 %w/w). The apparent molecular mass of the photopolymerised polymer was found to exceed 300,000 Da with hydrodynamic radii of 15 - 20 nm, estimated based on 1H DOSY NMR measurements The loaded paracetamol was completely released from the printlets between 45 minutes to 5 hours. In vivo single-dose acute toxicity studies in rats suggest that the printlets did not cause any tissue damage. The findings reported in this study represent a significant step towards the adoption of vat photopolymerization-based 3DP to produce personalised medicines
    corecore