30 research outputs found

    Sex‐biased Survival Contributes to Population Decline in a Long‐Lived Seabird, the Magellanic Penguin

    Get PDF
    We developed a Hidden Markov mark–recapture model (R package marked) to examine sex‐specific demography in Magellanic Penguins (Spheniscus magellanicus ). Our model was based on 33 yr of resightings at Punta Tombo, Argentina, where we banded ~44,000 chicks from 1983 to 2010. Because we sexed only 57% of individuals over their lifetime, we treated sex as an uncertain state in our model. Our goals were to provide insight into the population dynamics of this declining colony, to inform conservation of this species, and to highlight the importance of considering sex‐specific vital rates in demographic seabird studies. Like many other seabirds, Magellanic Penguins are long‐lived, serially monogamous, and exhibit obligate biparental care. We found that the non‐breeding‐season survival of females was lower than that of males and that the magnitude of this bias was highest for juveniles. Biases in survival accumulated as cohorts aged, leading to increasingly skewed sex ratios. The survival bias was greatest in years when overall survival was low, that is, females fared disproportionality worse when conditions were unfavorable. Our model‐estimated survival patterns are consistent with independent data on carcasses from the species’ non‐breeding grounds, showing that mortality is higher for juveniles than for adults and higher for females than for males. Juveniles may be less efficient foragers than adults are and, because of their smaller size, females may show less resilience to food scarcity than males. We used perturbation analysis of a population matrix model to determine the impact of sex‐biased survival on adult sex ratio and population growth rate at Punta Tombo. We found that adult sex ratio and population growth rate have the greatest proportional response, that is, elasticity, to female pre‐breeder and adult survival. Sex bias in juvenile survival (i.e., lower survival of females) made the greatest contribution to population declines from 1990 to 2009. Because starvation is a leading cause of morality in juveniles and adults, precautionary fisheries and spatial management in the region could help to slow population decline. Our data add to growing evidence that knowledge of sex‐specific demography and sex ratios are necessary for accurate assessment of seabird population trends

    Sex Ratio is Variable and Increasingly Male Biased at Two Colonies of Magellanic Penguins

    Full text link
    Sex ratios are commonly skewed and variable in wild populations, but few studies track temporal trends in this demographic parameter. We examined variation in the operational sex ratio at two protected and declining breeding colonies of Magellanic Penguins (Spheniscus magellanicus) in Chubut, Argentina. Penguins from the two colonies, separated by 105 km, migrate north in the non‐breeding season and have overlapping distributions at sea. Conditions during the non‐breeding season can impact long‐term trends in operational sex ratio (i.e., through sex‐specific survival) and interannual variation in operational sex ratio (i.e., through sex‐specific breeding decisions). We found an increasingly male‐biased operational sex ratio at the two disparate colonies of Magellanic Penguins, which may contribute to continued population decline. We also found that the two colonies showed synchronous interannual variation in operational sex ratio, driven by variation in the number of females present each year. This pattern may be linked to sex‐specific overwintering effects that cause females to skip breeding, i.e., to remain at sea rather than returning to the colony to breed, more often than males. Contrary to our predictions, colony‐wide reproductive success was not lower in years with a more male‐biased operational sex ratio. We did find that males showed more evidence of fighting and were less likely to pair when the operational sex ratio was more male biased. Our results highlight an indirect mechanism through which variation in the operational sex ratio can influence populations, through a higher incidence of fighting among the less abundant sex. Because biased sex ratios can reduce the size of the breeding population and influence rates of conflict, tracking operational sex ratio is critical for conservation

    Gaps in Protection of Important Ocean Areas: A Spatial Meta-Analysis of Ten Global Mapping Initiatives

    Get PDF
    To safeguard biodiversity effectively, marine protected areas (MPAs) should be sited using the best available science. There are numerous ongoing United Nations and non-governmental initiatives to map globally important marine areas. The criteria used by these initiatives vary, resulting in contradictions in the areas identified as important. Our analysis is the first to overlay these initiatives, quantify consensus, and conduct gap analyses at the global scale. We found that 55% of the ocean has been identified as important by one or more initiatives, and that individual areas have been identified by as many as seven overlapping initiatives. Using our overlay map and data on current MPA coverage, we highlight gaps in protection of important areas of the ocean. We considered any area identified by two to four initiatives to be of moderate consensus. Over 14% of the ocean fell under this category and most of this area (88%) is not yet protected. The largest concentrations of medium-consensus areas without protection were found in the Caribbean Sea, Madagascar and the southern tip of Africa, the Mediterranean Sea, and the Coral Triangle. Areas of high consensus (identified by five to seven initiatives) were almost always within MPAs, but their no-take status was often unreported. We found that nearly every marine province and nearly every exclusive economic zone contained area that has been identified as important but is not yet protected. Much of the identified area lies within contiguous stretches of \u3e100,000 km2; it is unrealistic to expect that all this area be protected. Nonetheless, our results on areas of consensus provide initial insight into opportunities for further ocean protection

    Water level fluctuations and the ecosystem functioning of lakes

    Get PDF
    Hydrological regimes are key drivers of productivity and structure in freshwater ecosystems but are increasingly impacted by human activity. Using 17 published food web models of 13 African lakes as a case study, we explored relationships between seasonal and interannual water level fluctuations and 15 attributes related to ecosystem function. We interpreted our results in the context of Odum's ecosystem maturity hypothesis, as systems with higher magnitude fluctuations may be kept at an earlier maturity stage than those that are relatively stable. The data we compiled indicate that long-term changes in the hydrological regimes of African lakes have already taken place. We used Least Absolute Shrinkage and Selection Operator (LASSO) regression to examine relationships between ecosystem attributes and seven physical characteristics. Of these characteristics, interannual water level fluctuation magnitude was the most frequently retained predictor in the regression models. Our results indicate that interannual water level fluctuations are positively correlated with primary and overall production, but negatively correlated with fish diversity, transfer efficiency, and food chain length. These trends are opposite those expected with increasing ecosystem maturity. Interestingly, we found seasonal water level fluctuations to be positively correlated with biomass. An increase in standing biomass is generally associated with more mature ecosystems. However, we found that less production and biomass occurred at high trophic levels in highly fluctuating compared to relatively stable systems. This synthesis provides evidence that water level fluctuations are a key process influencing ecosystem structure and function in lakes.publishedVersio

    Recruitment Facilitation and Spatial Pattern Formation in Soft-Bottom Mussel Beds

    Full text link
    Mussels (Mytilus edulis) build massive, spatially complex, biogenic structures that alter the biotic and abiotic environment and provide a variety of ecosystem services. Unlike rocky shores, where mussels can attach to the primary substrate, soft sediments are unsuitable for mussel attachment. We used a simple lattice model, field sampling, and field and laboratory experiments to examine facilitation of recruitment (i.e., preferential larval, juvenile, and adult attachment to mussel biogenic structure) and its role in the development of power-law spatial patterns observed in Maine, USA, soft-bottom mussel beds. The model demonstrated that recruitment facilitation produces power-law spatial structure similar to that in natural beds. Field results provided strong evidence for facilitation of recruitment to other mussels—they do not simply map onto a hard-substrate template of gravel and shell hash. Mussels were spatially decoupled from non-mussel hard substrates to which they can potentially recruit. Recent larval recruits were positively correlated with adult mussels, but not with other hard substrates. Mussels made byssal thread attachments to other mussels in much higher proportions than to other hard substrates. In a field experiment, mussel recruitment was highest to live mussels, followed by mussel shell hash and gravel, with almost no recruitment to muddy sand. In a laboratory experiment, evenly dispersed mussels rapidly self-organized into power-law clusters similar to those observed in nature. Collectively, the results indicate that facilitation of recruitment to existing mussels plays a major role in soft-bottom spatial pattern development. The interaction between large-scale resource availability (hard substrate) and local-scale recruitment facilitation may be responsible for creating complex power-law spatial structure in soft-bottom mussel beds

    Faculty and Student Perspectives on Open Education at Gettysburg College

    Full text link
    Commercially available textbooks and course materials are often expensive for students and sometimes don’t cover topics in exactly the way you might prefer to teach. Freely available and completely adaptable open educational resources (OER) have risen in popularity in recent years, both nationwide and locally, as a way to address both issues. Join us to hear from Alice Brawley Newlin (Management), Tasha Gownaris (Environmental Studies), Chris Oechler (Spanish), and Ryan Nedrow ’22 to hear about their experiences with OER in the classroom. Panelists will talk honestly about the benefits, drawbacks, challenges, and successes associated with open course materials in order to give you a better sense of whether OER might be a good fit in your own context

    Sex ratio is variable and increasingly male biased at two colonies of Magellanic Penguins

    No full text
    Sex ratios are commonly skewed and variable in wild populations, but few studies track temporal trends in this demographic parameter. We examined variation in the operational sex ratio at two protected and declining breeding colonies of Magellanic Penguins (Spheniscus magellanicus) in Chubut, Argentina. Penguins from the two colonies, separated by 105 km, migrate north in the non-breeding season and have overlapping distributions at sea. Conditions during the non-breeding season can impact long-term trends in operational sex ratio (i.e., through sex-specific survival) and interannual variation in operational sex ratio (i.e., through sex-specific breeding decisions). We found an increasingly male-biased operational sex ratio at the two disparate colonies of Magellanic Penguins, which may contribute to continued population decline. We also found that the two colonies showed synchronous interannual variation in operational sex ratio, driven by variation in the number of females present each year. This pattern may be linked to sex-specific overwintering effects that cause females to skip breeding, i.e., to remain at sea rather than returning to the colony to breed, more often than males. Contrary to our predictions, colony-wide reproductive success was not lower in years with a more male-biased operational sex ratio. We did find that males showed more evidence of fighting and were less likely to pair when the operational sex ratio was more male biased. Our results highlight an indirect mechanism through which variation in the operational sex ratio can influence populations, through a higher incidence of fighting among the less abundant sex. Because biased sex ratios can reduce the size of the breeding population and influence rates of conflict, tracking operational sex ratio is critical for conservation.Fil: Gownaris, Natasha J.. Gettysburg College; Estados UnidosFil: Garcia Borboroglu, Jorge Pablo. Global Penguin Society; Argentina. University of Washington; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Boersma, P. Dee. University of Washington; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina. Global Penguin Society; Argentin

    Real Talk About OER: The JCCTL OER Grantee Experience (so far!)

    Full text link
    The JCCTL awarded 7 OER Grants to 8 instructors in 2021. Join us to hear from Tasha Gownaris, Marta Maras, Chris Oechler, and Alecea Standlee as they share their experiences remixing and using these custom resources in their fall 2021 classes. Speakers will describe their projects and address the impact of open textbooks on classroom equity and student academic success. There will be plenty of time for questions about the 2021 projects and the current grant opportunity. You may be inspired to apply for the 2022 round of OER Grants

    Real Talk About OER: The JCCTL OER Grantee Experience (so far!)

    Full text link
    The JCCTL awarded 7 OER Grants to 8 instructors in 2021. Join us to hear from Tasha Gownaris, Marta Maras, Chris Oechler, and Alecea Standlee as they share their experiences remixing and using these custom resources in their fall 2021 classes. Speakers will describe their projects and address the impact of open textbooks on classroom equity and student academic success. There will be plenty of time for questions about the 2021 projects and the current grant opportunity. You may be inspired to apply for the 2022 round of OER Grants (applications are due March 17!)

    Data from: Predicting species’ vulnerability in a massively perturbed system: the fishes of Lake Turkana, Kenya

    No full text
    Background and Trophic Diversity Study: Lake Turkana is an understudied desert lake shared by Kenya and Ethiopia. This system is at the precipice of large-scale changes in ecological function due to climate change and economic development along its major inflowing river, the Omo River. To anticipate response by the fish community to these changes, we quantified trophic diversity for seven ecological disparate species (Alestes baremose, Hydrocynus forskalli, Labeo horie, Lates niloticus, Oreochromis niloticus, Synodontis schall, and Tilapia zillii) using stable isotopes. Based on their marked morphological differentiation, we postulated that dietary niches of these species would be similar in size but show little overlap. The degree of trophic diversity varied greatly among the species studied, refuting our hypothesis regarding dietary niche size. Oreochromis niloticus and L. niloticus had the highest trophic diversity and significantly larger dietary niches than T. zillii, A. baremose and H. forskalli. Low overlap among the dietary niches of the seven species, with the exception of the synodontid catfish S. schall, is consistent with our second hypothesis. Predicting Species’ Vulnerability: Breeding vulnerability was highest among those species with the lowest trophic diversity. We predict that in suffering two strikes against them, A. baremose, H. forskalli, T. zillii, and L. horie will be most affected by the highly altered Lake Turkana ecosystem and that O. niloticus, L. niloticus and S. schall will be least affected. Low vulnerability among O. niloticus and L. niloticus is promising for the future of the lake’s fishery, but the third most important fishery species (L. horie) will be highly vulnerable to impending ecosystem change. T. zillii should be treated as separate from O. niloticus in the fishery given higher sensitivity and a different ecological role. We see potential for expansion of the fishery for S. schall but don’t recommend the development of a fishery for A. baremose and H. forskalli
    corecore