88 research outputs found

    A Phase I/IIA Clinical Study With A Chimeric Mouse-Human Monoclonal Antibody To The V3 Loop Of Human Immunodeficiency Virus Type 1 Gp120

    Get PDF
    A phase I/IIA clinical trial with the chimeric mouse-human monoclonal antibody CGP 47 439 to the principal neutralization determinant in the V3 region of human immunodeficiency virus type 1 (HIV-1) strain IIIB envelope protein gp 120 is reported. The trial was an uncontrolled single-center, open-label, multidose tolerability, immunogenicity, and pharmacokinetic study in homosexual men with advanced HIV disease. Patient groups were formed on the basis of the reactivity of the antibody with the gp 120 of their HIV-1 isolates. Intravenous infusions of 1, 10, and 25 mg of antibody were followed by seven escalated doses of 50, 100, and 200 mg, every 3 weeks. The antibody was well tolerated; no toxicity was observed. Some patients showed a transient but insignificant antibody response to the antibody with no apparent adverse reactions or accelerated elimination of it. Substantial serum levels of the antibody were maintained with a mean t1/2β of 8-16 days. A virus burden reduction was observed in some patient

    Activation induced changes in GABA: functional MRS at 7 T with MEGA-sLASER

    Get PDF
    Functional magnetic resonance spectroscopy (fMRS) has been used to assess the dynamic metabolic responses of the brain to a physiological stimulus non-invasively. However, only limited information on the dynamic functional response of γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is available. We aimed to measure the activation-induced changes in GABA unambiguously using a spectral editing method, instead of the conventional direct detection techniques used in previous fMRS studies. The Mescher-Garwood-semi-localised by adiabatic selective refocusing (MEGA-sLASER) sequence was developed at 7 T to obtain the time course of GABA concentration without macromolecular contamination. A significant decrease (−12±5%) in the GABA to total creatine ratio (GABA/tCr) was observed in the motor cortex during a period of 10 minutes of hand-clenching, compared to an initial baseline level (GABA/tCr = 0.11±0.02) at rest. An increase in the Glx (glutamate and glutamine) to tCr ratio was also found, which is in agreement with previous findings. In contrast, no significant changes in NAA/tCr and tCr were detected. With consistent and highly efficient editing performance for GABA detection and the advantage of visually identifying GABA resonances in the spectra, MEGA-sLASER is demonstrated to be an effective method for studying of dynamic changes in GABA at 7 T

    Structural covariance and cortical reorganization in schizophrenia: a MRI-based morphometric study

    Get PDF
    Background: In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganization process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganization. Methods: Structural MRI scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue was estimated at regional level across 90 atlas-based parcellations. Group level structural covariance was studied using a graph theoretical framework. Results: Patients had distributed reduction in grey matter volume, with high degree of localized covariance (clustering) compared to controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared to controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared to controls. Conclusion: Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganization with systematic de-escalation of conventional ‘hub’ regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency

    Relationships between cortical myeloarchitecture and electrophysiological networks

    Get PDF
    The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology

    Do quantitative levels of antispike-IgG antibodies aid in predicting protection from SARS-CoV-2 infection? Results from a longitudinal study in a police cohort.

    Get PDF
    In a COVID-19 sero-surveillance cohort study with predominantly healthy and vaccinated individuals, the objectives were (i) to investigate longitudinally the factors associated with the quantitative dynamics of antispike (anti-S1) IgG antibody levels, (ii) to evaluate whether the levels were associated with protection from SARS-CoV-2 infection, and (iii) to assess whether the association was different in the pre-Omicron compared with the Omicron period. The QuantiVac Euroimmun ELISA test was used to quantify anti-S1 IgG levels. The entire study period (16 months), the 11-month pre-Omicron period and the cross-sectional analysis before the Omicron surge included 3219, 2310, and 895 reactive serum samples from 949, 919, and 895 individuals, respectively. Mixed-effect linear, mixed-effect time-to-event, and logistic regression models were used to achieve the objectives. Age and time since infection or vaccination were the only factors associated with a decline of anti-S1 IgG levels. Higher antibody levels were significantly associated with protection from SARS-CoV-2 infection (0.89, 95% confidence interval [CI] 0.82-0.97), and the association was higher during the time period when Omicron was predominantly circulating compared with the ones when Alpha and Delta variants were predominant (adjusted hazard ratio for interaction 0.66, 95% CI 0.53-0.84). In a prediction model, it was estimated that >8000 BAU/mL anti-S1 IgG was required to reduce the risk of infection with Omicron variants by approximately 20%-30% for 90 days. Though, such high levels were only found in 1.9% of the samples before the Omicron surge, and they were not durable for 3 months. Anti-S1 IgG antibody levels are statistically associated with protection from SARS-CoV-2 infection. However, the prediction impact of the antibody level findings on infection protection is limited
    • …
    corecore