865 research outputs found

    The Formation of Galaxy Disks

    Full text link
    We present a new set of multi-million particle SPH simulations of the formation of disk dominated galaxies in a cosmological context. Some of these galaxies are higher resolution versions of the models already described in Governato et al (2007). To correctly compare simulations with observations we create artificial images of our simulations and from them measure photometric Bulge to Disk (B/D) ratios and disk scale lengths. We show how feedback and high force and mass resolution are necessary ingredients to form galaxies that have flatter rotation curves, larger I band disk scale lengths and smaller B/D ratios. A new simulated disk galaxy has an I-band disk scale length of 9.2 kpc and a B/D flux ratio of 0.64 (face on, dust reddened).Comment: To appear in proceedings of "Formation and Evolution of Galaxy Disks", Rome, October 2007, Eds. J.G. Funes, S.J. and E.M. Corsini. Bigger figures than in printed versio

    Evolution of the Mass Function of Dark Matter Haloes

    Get PDF
    We use a high resolution Λ\LambdaCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of fifteen, in a 50 h−1h^{-1}Mpc volume containing 80 million particles. Our low redshift results allow us to probe low σ\sigma density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth and Tormen mass function provides an excellent match to all of our data except for redshifts of ten and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 percent for the 10^{10}-10^{11} \msun haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth and Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high redshift (z ≃\simeq 6) QSOs, which are thought to be hosted by haloes at 5σ\sigma peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50%. We test the sensitivity of our results to force accuracy, starting redshift, and halo finding algorithm.Comment: v2: 9 pages, 11 figures, accepted by MNRAS with revisions. Includes additional numerical tests and error discussion, clarifications, and referee suggestion

    The Origin and Properties of Intracluster Stars in a Rich Cluster

    Full text link
    We use a multi million particle N-body + SPH simulation to follow the formation of a rich galaxy cluster in a Lambda+CDM cosmology, with the goal of understanding the origin and properties of intracluster stars. The simulation includes gas cooling, star formation, the effects of a uniform UVB and feedback from supernovae. Halos that host galaxies as faint as M_R = -19.0 are resolved by this simulation, which includes 85% of the total galaxy luminosity in a rich cluster. We find that the accumulation of intracluster light (ICL) is an ongoing process, linked to infall and stripping events. The unbound star fraction increases with time and is 20% at z = 0, consistent with observations of galaxy clusters. The surface brightness profile of the cD shows an excess compared to a de Vaucouleur profile near 200 kpc, which is also consistent with observations. Both massive and small galaxies contribute substantially to the formation of the ICL, with stars stripped preferentially from the outer parts of their stellar distributions. Simulated observations of planetary nebulae (PNe) show significant substructure in velocity space. Despite this, individual intracluster PNe might be useful mass tracers if more than 5 fields at a range of radii have measured line-of-sight velocities, where an accurate mass calculation depends more on the number of fields than the number of PNe measured per field. However, the orbits of IC stars are more anisotropic than those of galaxies or dark matter, which leads to a systematic underestimate of cluster mass relative to that calculated with galaxies, if not accounted for in dynamical models. Overall, the properties of ICL formed in a hierarchical scenario are in good agreement with current observations. (Abridged)Comment: Replaced with MNRAS published version. One corrected figure, minor text changes. MNRAS, 355, 15

    Inhomogeneous Reionization Regulated by Radiative and Stellar Feedbacks

    Get PDF
    We study the inhomogeneous reionization in a critical density CDM universe due to stellar sources, including Population III objects. The spatial distribution of the sources is obtained from high resolution numerical N-body simulations. We calculate the source properties taking into account a self-consistent treatment of both radiative (ie ionizing and H2 -photodissociating photons) and stellar (ie SN explosions) feedbacks regulated by massive stars. This allows us to describe the topology of the ionized and dissociated regions at various cosmic epochs and derive the evolution of H, He, and H2 filling factors, soft UV background, cosmic star formation rate and the final fate of ionizing objects. The main results are: (i) galaxies reionize the IGM by z~10 (with some uncertainty related to the gas clumping factor), whereas H2 is completely dissociated already by z~25; (ii) reionization is mostly due to the relatively massive objects which collapse via H line cooling, while objects whose formation relies on H2 cooling alone are insufficient to this aim; (iii) the diffuse soft UV background is the major source of radiative feedback effects for z<15; at higher z direct flux from neighboring objects dominates; (iv) the match of the calculated cosmic star formation history with the one observed at lower redshifts suggests that the conversion efficiency of baryons into stars is ~1%; (v) we find that a very large population of dark objects which failed to form stars is present by z~8. We discuss and compare our results with similar previous studies.Comment: 34 pages, emulateapj.sty, LaTeX, 13 figures. MNRAS, submitte
    • …
    corecore