27 research outputs found

    The ladies trial: laparoscopic peritoneal lavage or resection for purulent peritonitisA and Hartmann's procedure or resection with primary anastomosis for purulent or faecal peritonitisB in perforated diverticulitis (NTR2037)

    Get PDF
    Background: Recently, excellent results are reported on laparoscopic lavage in patients with purulent perforated diverticulitis as an alternative for sigmoidectomy and ostomy. The objective of this study is to determine whether LaparOscopic LAvage and drainage is a safe and effective treatment for patients with purulent peritonitis (LOLA-arm) and to determine the optimal resectional strategy in patients with a purulent or faecal peritonitis (DIVA-arm: perforated DIVerticulitis: sigmoidresection with or without Anastomosis). Methods/Design: In this multicentre randomised trial all patients with perforated diverticulitis are included. Upon laparoscopy, patients with purulent peritonitis are treated with laparoscopic lavage and drainage, Hartmann's procedure or sigmoidectomy with primary anastomosis in a ratio of 2:1:1 (LOLA-arm). Patients with faecal peritonitis will be randomised 1:1 between Hartmann's procedure and resection with primary anastomosis (DIVA-arm). The primary combined endpoint of the LOLA-arm is major morbidity and mortality. A sample size of 132:66:66 patients will be able to detect a difference in the primary endpoint from 25% in resectional groups compared to 10% in the laparoscopic lavage group (two sided alpha = 5%, power = 90%). Endpoint of the DIVA-arm is stoma free survival one year after initial surgery. In this arm 212 patients are needed to significantly demonstrate a difference of 30% (log rank test two sided alpha = 5% and powe

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Xantohumol

    No full text
    Le pigment jaune du houblon (xanthohumol), isolé par Power, Tutin et Rogerson en 1913, est une chalcone (formule I). L'isomérisation en milieu alcalin du xanthohumol donne la flavanone correspondante (isoxanthohumol-humulol)

    Physical background of the endurance limit in poly(ether ether ketone)

    No full text
    In this study, it is demonstrated that the apparent endurance (fatigue) limit for plasticity‐controlled failure in poly(ether ether ketone) is related to an evolution of the yield stress. The increase of the yield stress has two separate causes: (a) stress‐ and temperature‐accelerated physical aging of the amorphous phase and (b) strain hardening as a result of texture development. Yield stress evolution is monitored using thermomechanical treatments during which the material is exposed to temperature and load. The combined contributions of both temperature and applied stress to yield stress evolution (below T g ) can be effectively modeled using an effective time approach employing an Arrhenius temperature‐activation as well as Eyring stress activation. Combination of the yield stress evolution with a previously developed model for plasticity‐controlled failure allows prediction of time‐to‐failure under both static and cyclic load, quantitatively capturing the observed apparent endurance limit

    Kinetics of the Polymorphic Transition in Isotactic Poly(1-butene) under Uniaxial Extension. New Insights From Designed Mechanical histories.

    Get PDF
    Isotactic poly(1-butene) (i-PBu) crystallizes upon cooling from the melt in a metastable tetragonal structure (form II), which slowly evolves toward the state of ultimate stability, i.e., the trigonal form I. It is well-known that this polymorphic transformation, which typically requires few weeks at room temperature, can be greatly accelerated by the application of mechanical stresses and/or deformation. However, the exact mechanism of this kinetics enhancement is not completely understood. In this work, the polymorphic transformation of i-PBu under tensile deformation is investigated in details. Thanks to properly designed mechanical histories-including experiments at different true strain and true stress rates-and to in situ wide-angle X-ray diffraction experiments, the role of the various deformation parameters is elucidated. The use of different time scales during the experiments enabled us to gain kinetics data on the transition, information which is disregarded in current literature. The set of experiments performed permit to highlight a stress-driven mechanism, active up to a fraction of transformed form I of about 0.4-0.5. After this value is reached, the stress-transformation time superposition principle does not hold anymore and the transition kinetics slows down, since a major part of the total applied stress is carried by the mechanically stronger form I lamellae

    Predicting plasticity‐controlled failure of glassy polymers: Influence of stress‐accelerated progressive physical aging

    No full text
    This study focuses on the prediction of long-term failure of glassy polymers under static or cyclic loading conditions, including the role of stress-accelerated progressive aging. Progressive physical aging plays a dominant role in a polymer's performance under prolonged loading conditions, and to obtain accurate predictions of failure, its effect has to be considered. First, the aging kinetics, as influenced by temperature and stress history, are studied extensively. Similar to an elevated temperature, the application of a stress (below the yield stress) activates the aging process, and as a result, the yield stress will evolve faster in time. The activation by stress appears to be limited; at some stress level, the activation stagnates and is followed by rejuvenation. This evolution is captured in a model by introducing a state parameter, which describes the thermodynamic state of the material and is directly linked to the yield stress. With the aging kinetics included in the model, an accurate prediction of the failure time for cyclic loading conditions is obtained. For static loading conditions, however, the effect of physical aging is overestimated because of the stagnation of the activation by stress. It appears that there are marked differences in the stress level where stagnation and subsequent rejuvenation occur for a cyclic or static load

    Predicting plasticity-controlled failure of glassy polymers: influence of stress-accelerated progressive physical aging

    No full text
    This study focuses on the prediction of long-term failure of glassy polymers under static or cyclic loading conditions, including the role of stress-accelerated progressive aging. Progressive physical aging plays a dominant role in a polymer's performance under prolonged loading conditions, and to obtain accurate predictions of failure, its effect has to be considered. First, the aging kinetics, as influenced by temperature and stress history, are studied extensively. Similar to an elevated temperature, the application of a stress (below the yield stress) activates the aging process, and as a result, the yield stress will evolve faster in time. The activation by stress appears to be limited; at some stress level, the activation stagnates and is followed by rejuvenation. This evolution is captured in a model by introducing a state parameter, which describes the thermodynamic state of the material and is directly linked to the yield stress. With the aging kinetics included in the model, an accurate prediction of the failure time for cyclic loading conditions is obtained. For static loading conditions, however, the effect of physical aging is overestimated because of the stagnation of the activation by stress. It appears that there are marked differences in the stress level where stagnation and subsequent rejuvenation occur for a cyclic or static load
    corecore