556 research outputs found

    Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Get PDF
    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (<1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NO_x enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site

    Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation

    Get PDF
    The underprediction of ambient secondary organic aerosol (SOA) levels by current atmospheric models in urban areas is well established, yet the cause of this underprediction remains elusive. Likewise, the relative contribution of emissions from gasoline- and diesel-fueled vehicles to the formation of SOA is generally unresolved. We investigate the source of these two discrepancies using data from the 2010 CalNex experiment carried out in the Los Angeles Basin (Ryerson et al., 2013). Specifically, we use gas-phase organic mass (GPOM) and CO emission factors in conjunction with measured enhancements in oxygenated organic aerosol (OOA) relative to CO to quantify the significant lack of closure between expected and observed organic aerosol concentrations attributable to fossil-fuel emissions. Two possible conclusions emerge from the analysis to yield consistency with the ambient data: (1) vehicular emissions are not a dominant source of anthropogenic fossil SOA in the Los Angeles Basin, or (2) the ambient SOA mass yields used to determine the SOA formation potential of vehicular emissions are substantially higher than those derived from laboratory chamber studies

    Peribiliary glands are key in regeneration of the human biliary epithelium after severe bile duct injury

    Get PDF
    Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We, therefore, developed a novel ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Post-ischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation and maturation. Proliferation of PBG cells increased after 24 h of oxygenated incubation, reaching a peak after 72 h. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (Nanog+/Sox9+) to a mature (CFTR+/secretin receptor+) and activated phenotype (increased expression of HIF-1α, Glut-1, and VEGF-A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. CONCLUSION: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behaviour of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury. This article is protected by copyright. All rights reserved

    Brain atrophy accelerates cognitive decline in cerebral small vessel disease: The LADIS study

    Get PDF
    Objective: To examine the independent contributions and combined interactions of medial temporal lobe atrophy (MTA), cortical and subcortical atrophy, and white matter lesion (WML) volume in longitudinal cognitive performance. Methods: A total of 477 subjects with age-relatedWMLwere evaluated with brain MRI and annual neuropsychological examinations in 3-year follow-up. Baseline MRI determinants of cognitive decline were analyzed with linear mixed models controlling for multiple confounders. Results: MTA and subcortical atrophy predicted significantly steeper rate of decline in global cognitive measures as well as compound scores for psychomotor speed, executive functions, and memory after adjusting for age, gender, education, lacunes/infarcts, and WML volume. Cortical atrophy independently predicted decline in psychomotor speed. WML volume remained significantly associated with cognitive decline even after controlling for the atrophy scores. Moreover, significant synergistic interactions were found between WML and atrophy measures in overall cognitive performance across time and the rate of cognitive decline. Synergistic effects were also observed between baseline lacunar infarcts and all atrophy measures on change in psychomotor speed. The main results remained robust after exclusion of subjects with clinical stroke or incident dementia, and after additional adjustments for progression of WML and lacunes. Conclusions: Brain atrophy and WML are independently related to longitudinal cognitive decline in small vessel disease. MTA, subcortical, and cortical atrophy seem to potentiate the effect ofWML and lacunes on cognitive decline

    Location of lacunar infarcts correlates with cognition in a sample of non-disabled subjects with age-related white-matter changes: the LADIS study

    Get PDF
    Objectives: In cerebral small vessel disease, whitematter hyperintensities (WMH) and lacunes are both related to cognition. Still, their respective contribution in older people remains unclear. The purpose of this study is to assess the topographic distribution of lacunes and determine whether it has an impact on cognitive functions in a sample of non-disabled patients with age-related white-matter changes. Methods: Data were drawn from the baseline evaluation of the LADIS (Leucoaraioisis and Disability study) cohort of non-disabled subjects beyond 65 years of age. The neuropsychological evaluation was based on the Mini Mental Status Examination (MMSE), a modified Alzheimer Diseases Assessment Scale for global cognitive functions, and compound Z scores for memory, executive functions, speed and motor control. WMH were rated according to the Fazekas scale; the number of lacunes was assessed in the following areas: lobar white matter, putamen/ pallidum, thalamus, caudate nucleus, internal/external capsule, infratentorial areas. An analysis of covariance was performed after adjustment for possible confounders. Results: Among 633 subjects, 47% had at least one lacune (31% at least one within basal ganglia). The presence of lacunes in the thalamus was associated with lower scores of MMSE (b=20.61; p=0.043), and worse compound scores for speed and motor control (b=20.25; p=0.006), executive functions (b=20.19; p=0.022) independently of the cognitive impact of WMH. There was also a significant negative association between the presence of lacunes in putamen/ pallidum and the memory compound Z score (b=20.13; p=0.038). By contrast, no significant negative association was found between cognitive parameters and the presence of lacunes in internal capsule, lobar white matter and caudate nucleus. Conclusion: In non-disabled elderly subjects with leucoaraisosis, the location of lacunes within subcortical grey matter is a determinant of cognitive impairment, independently of the extent of WMH

    Total Observed Organic Carbon (TOOC): A synthesis of North American observations

    Get PDF
    Measurements of organic carbon compounds in both the gas and particle phases measured upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC) over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 μgC m^−3 from the cleanest site (Trinidad Head) to the most polluted (Mexico City). Organic aerosol makes up 3–17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketene and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source to sink

    White Matter Lesion Progression in LADIS Frequency, Clinical Effects, and Sample Size Calculations

    Get PDF
    BACKGROUND AND PURPOSE: White matter lesion (WML) progression has been advocated as a surrogate marker in intervention trials on cerebral small vessel disease. We assessed the rate of visually rated WML progression, studied correlations between lesion progression and cognition, and estimated sample sizes for clinical trials with pure WML progression vs combined WML progression-cognitive outcomes. METHODS: Those 394 participants of the Leukoaraiosis and Disability Study (LADIS) study with magnetic resonance imaging scanning at baseline and 3-year follow-up were analyzed. WML progression rating relied on the modified Rotterdam Progression Scale. The Vascular Dementia Assessment Scale global score and a composite score of specific executive function tests assessed longitudinal change in cognition. Sample size calculations were based on the assumption that treatment reduces WML progression by 1 grade on the Rotterdam Progression Scale. RESULTS: WML progression related to deterioration in cognitive functioning. This relationship was less pronounced in subjects with early confluent and confluent lesions. Consequently, studies in which the outcome is cognitive change resulting from treatment effects on lesion progression will need between 1809 subjects per treatment arm when using executive tests and up to 18 853 subjects when using the Vascular Dementia Assessment Scale score. Studies having WML progression as the sole outcome will need only 58 or 70 individuals per treatment arm. CONCLUSIONS: WML progression is an interesting outcome for proof-of-concept studies in cerebral small vessel disease. If cognitive outcome measures are added to protocols, then sample size estimates increase substantially. Our data support the use of an executive test battery rather than the Vascular Dementia Assessment Scale as the primary cognitive outcome measure
    corecore