111 research outputs found

    A sample of low energy bursts from FRB 121102

    Get PDF
    We present 41 bursts from the first repeating fast radio burst discovered (FRB 121102). A deep search has allowed us to probe unprecedentedly low burst energies during two consecutive observations (separated by one day) using the Arecibo telescope at 1.4 GHz. The bursts are generally detected in less than a third of the 580-MHz observing bandwidth, demonstrating that narrow-band FRB signals may be more common than previously thought. We show that the bursts are likely faint versions of previously reported multi-component bursts. There is a striking lack of bursts detected below 1.35 GHz and simultaneous VLA observations at 3 GHz did not detect any of the 41 bursts, but did detect one that was not seen with Arecibo, suggesting preferred radio emission frequencies that vary with epoch. A power law approximation of the cumulative distribution of burst energies yields an index āˆ’1.8Ā±0.3-1.8\pm0.3 that is much steeper than the previously reported value of āˆ¼āˆ’0.7\sim-0.7. The discrepancy may be evidence for a more complex energy distribution. We place constraints on the possibility that the associated persistent radio source is generated by the emission of many faint bursts (āˆ¼700\sim700 msāˆ’1^{-1}). We do not see a connection between burst fluence and wait time. The distribution of wait times follows a log-normal distribution centered around āˆ¼200\sim200 s; however, some bursts have wait times below 1 s and as short as 26 ms, which is consistent with previous reports of a bimodal distribution. We caution against exclusively integrating over the full observing band during FRB searches, because this can lower signal-to-noise.Comment: Accepted version. 16 pages, 7 figures, 1 tabl

    Searching for the spectral depolarisation of ASKAP one-off FRB sources

    Get PDF
    Fast Radio Bursts (FRBs) are extragalactic transients of (sub-)millisecond duration that show wide-ranging spectral, temporal, and polarimetric properties. The polarimetric analysis of FRBs can be used to probe intervening media, study the emission mechanism, and test possible progenitor models. In particular, low-frequency depolarization of FRBs can identify dense, turbulent, magnetized, ionized plasma thought to be near the FRB progenitor. An ensemble of repeating FRBs has shown low-frequency depolarization. The depolarization is quantified by the parameter ĻƒRMā , which correlates with proxies for both the turbulence and mean magnetic field strength of the putative plasma. However, while many non-repeating FRBs show comparable scattering (and hence inferred turbulence) to repeating FRBs, it is unclear whether their surrounding environments are comparable to those of repeating FRBs. To test this, we analyse the spectro-polarimetric properties of five one-off FRBs and one repeating FRB, detected and localized by the Australian Square Kilometer Array Pathfinder. We search for evidence of depolarization due toĀ ĻƒRMĀ and consider models where the depolarization is intrinsic to the source. We find no evidence (for or against) the sample showing spectral depolarization. Under the assumption that FRBs have multipath propagation-induced depolarization, the correlation between our constraint onĀ and RM is consistent with repeating FRBs only if the values ofĀ ĻƒRMĀ are much smaller than our upper limits. Additionally, the correlation between the constraints onĀ ĻƒRMĀ and Ļ„s is inconsistent with repeating FRBs. The observations provide further evidence for differences in the typical environments and sources of one-off and repeating FRBs

    Siting Background Towers to Characterize Incoming Air for Urban Greenhouse Gas Estimation: A Case Study in the Washington, DC/Baltimore Area

    Full text link
    There is increased interest in understanding urban greenhouse gas (GHG) emissions. To accurately estimate city emissions, the influence of extraurban fluxes must first be removed from urban greenhouse gas (GHG) observations. This is especially true for regions, such as the U.S. Northeastern CorridorĆ¢ Baltimore/Washington, DC (NECĆ¢ B/W), downwind of large fluxes. To help site background towers for the NECĆ¢ B/W, we use a coupled Bayesian Information Criteria and geostatistical regression approach to help site four background locations that best explain CO2 variability due to extraurban fluxes modeled at 12 urban towers. The synthetic experiment uses an atmospheric transport and dispersion model coupled with two different flux inventories to create modeled observations and evaluate 15 candidate towers located along the urban domain for February and July 2013. The analysis shows that the average ratios of extraurban inflow to total modeled enhancements at urban towers are 21% to 36% in February and 31% to 43% in July. In July, the incoming air dominates the total variability of synthetic enhancements at the urban towers (R2ƂĀ =ƂĀ 0.58). Modeled observations from the selected background towers generally capture the variability in the synthetic CO2 enhancements at urban towers (R2ƂĀ =ƂĀ 0.75, rootĆ¢ meanĆ¢ square error (RMSE)ƂĀ =ƂĀ 3.64ƂĀ ppm; R2ƂĀ =ƂĀ 0.43, RMSEƂĀ =ƂĀ 4.96ƂĀ ppm for February and July). However, errors associated with representing background air can be up to 10ƂĀ ppm for any given observation even with an optimal background tower configuration. More sophisticated methods may be necessary to represent background air to accurately estimate urban GHG emissions.Key PointsFactoring in the variability of greenhouse gas enhancements in incoming air is critical for estimating emissions in an urban domainStatistical methods were used to site four towers sampling background air in the Washington, DC/Baltimore regionOptimal background tower configurations for representing incoming air can still have large errors for any given urban GHG observationPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142902/1/jgrd54353_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142902/2/jgrd54353.pd

    LOFAR early-time search for coherent radio emission from GRB 180706A

    Get PDF
    Ā© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.The nature of the central engines of gamma-ray bursts (GRBs) and the composition of their relativistic jets are still under debate. If the jets are Poynting flux dominated rather than baryon dominated, a coherent radio flare from magnetic re-connection events might be expected with the prompt gamma-ray emission. There are two competing models for the central engines of GRBs; a black hole or a newly formed milli-second magnetar. If the central engine is a magnetar it is predicted to produce coherent radio emission as persistent or flaring activity. In this paper, we present the deepest limits to date for this emission following LOFAR rapid response observations of GRB 180706A. No emission is detected to a 3Ļƒ\sigma limit of 1.7 mJy beamāˆ’1^{-1} at 144 MHz in a two-hour LOFAR observation starting 4.5 minutes after the gamma-ray trigger. A forced source extraction at the position of GRB 180706A provides a marginally positive (1 sigma) peak flux density of 1.1Ā±0.91.1 \pm 0.9 mJy. The data were time-sliced into different sets of snapshot durations to search for FRB like emission. No short duration emission was detected at the location of the GRB. We compare these results to theoretical models and discuss the implications of a non-detection.Peer reviewedFinal Accepted Versio
    • ā€¦
    corecore