205 research outputs found

    Smad7 and protein phosphatase 1α are critical determinants in the duration of TGF-β/ALK1 signaling in endothelial cells

    Get PDF
    BACKGROUND: In endothelial cells (EC), transforming growth factor-β (TGF-β) can bind to and transduce signals through ALK1 and ALK5. The TGF-β/ALK5 and TGF-β/ALK1 pathways have opposite effects on EC behaviour. Besides differential receptor binding, the duration of TGF-β signaling is an important specificity determinant for signaling responses. TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs occurs transiently. RESULTS: The temporal activation of TGF-β-induced Smad1/5 phosphorylation in ECs was found to be affected by de novo protein synthesis, and ALK1 and Smad5 expression levels determined signal strength of TGF-β/ALK1 signaling pathway. Smad7 and protein phosphatase 1α (PP1α) mRNA expression levels were found to be specifically upregulated by TGF-β/ALK1. Ectopic expression of Smad7 or PP1α potently inhibited TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs. Conversely, siRNA-mediated knockdown of Smad7 or PP1α enhanced TGF-β/ALK1-induced signaling responses. PP1α interacted with ALK1 and this association was further potentiated by Smad7. Dephosphorylation of the ALK1, immunoprecipitated from cell lysates, was attenuated by a specific PP1 inhibitor. CONCLUSION: Our results suggest that upon its induction by the TGF-β/ALK1 pathway, Smad7 may recruit PP1α to ALK1, and thereby control TGF-β/ALK1-induced Smad1/5 phosphorylation

    Challenges and Opportunities for Drug Repositioning inFibrodysplasia Ossificans Progressiva

    Get PDF
    Fibrodysplasia ossificans progressiva (FOP) is an ultrarare congenital disease that progresses through intermittent episodes of bone formation at ectopic sites. FOP patients carry heterozygous gene point mutations in activin A receptor type I ACVR1, encoding the bone morphogenetic protein (BMP) type I serine/threonine kinase receptor ALK2, termed activin receptor-like kinase (ALK)2. The mutant ALK2 displays neofunctional responses to activin, a closely related BMP cytokine that normally inhibits regular bone formation. Moreover, the mutant ALK2 becomes hypersensitive to BMPs. Both these activities contribute to enhanced ALK2 signalling and endochondral bone formation in connective tissue. Being a receptor with an extracellular ligand-binding domain and intrinsic intracellular kinase activity, the mutant ALK2 is a druggable target. Although there is no approved cure for FOP yet, a number of clinical trials have been recently initiated, aiming to identify a safe and effective treatment for FOP. Among other targeted approaches, several repurposed drugs have shown promising results. In this review, we describe the molecular mechanisms underlying ALK2 mutation-induced aberrant signalling and ectopic bone formation. In addition, we recapitulate existing in vitro models to screen for novel compounds with a potential application in FOP. We summarize existing therapeutic alternatives and focus on repositioned drugs in FOP, at preclinical and clinical stage

    Spheroid three-dimensional culture enhances Notch signaling in cardiac progenitor cells

    Get PDF
    Cardiac progenitor cells (CPCs) are a promising candidate for cardiac regeneration, and the interaction between CPCs and their microenvironment can influence their regenerative response. Notch signaling plays a key role in cell fate decisions in the developing and adult heart. Here, we investigated the effect of three-dimensional (3D) spheroid culture, as a model of the 3D microenvironment, on Notch in fetal and adult human CPCs, under room air (20%) and physiological (5%) oxygen tension. Notch signaling is enhanced in 3D spheroids; spheroid culture under 5% O2 further increases Notch signaling enhancement, and might ultimately improve the regenerative potential of CPCs

    A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants

    Get PDF
    In experimental assays of angiogenesis in three-dimensional fibrin matrices, a temporary scaffold formed during wound healing, the type and composition of fibrin impacts the level of sprouting. More sprouts form on high molecular weight (HMW) than on low molecular weight (LMW) fibrin. It is unclear what mechanisms regulate the number and the positions of the vascular-like structures in cell cultures. To address this question, we propose a mechanistic simulation model of endothelial cell migration and fibrin proteolysis by the plasmin system. The model is a hybrid, cell-based and continuum, computational model based on the cellular Potts model and sets of partial-differential equations. Based on the model results, we propose that a positive feedback mechanism between uPAR, plasmin and transforming growth factor β1 (TGFβ1) selects cells in the monolayer for matrix invasion. Invading cells releases TGFβ1 from the extracellular matrix through plasmin-mediated fibrin degradation. The activated TGFβ1 further stimulates fibrin degradation and keeps proteolysis active as the sprout invades the fibrin matrix. The binding capacity for TGFβ1 of LMW is reduced relative to that of HMW. This leads to reduced activation of proteolysis and, consequently, reduced cell ingrowth in LMW fibrin compared to HMW fibrin. Thus our model predicts that endothelial cells in LMW fibrin matrices compared to HMW matrices show reduced sprouting due to a lower bio-availability of TGFβ1

    The Inflammatory Profile of CTEPH-Derived Endothelial Cells Is a Possible Driver of Disease Progression

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is a form of pulmonary hypertension characterized by the presence of fibrotic intraluminal thrombi and causing obliteration of the pulmonary arteries. Although both endothelial cell (EC) dysfunction and inflammation are linked to CTEPH pathogenesis, regulation of the basal inflammatory response of ECs in CTEPH is not fully understood. Therefore, in the present study, we investigated the role of the nuclear factor (NF)-κB pro-inflammatory signaling pathway in ECs in CTEPH under basal conditions. Basal mRNA levels of interleukin (IL)-8, IL-1β, monocyte chemoattractant protein-1 (MCP-1), C-C motif chemokine ligand 5 (CCL5), and vascular cell adhesion molecule-1 (VCAM-1) were upregulated in CTEPH-ECs compared to the control cells. To assess the involvement of NF-κB signaling in basal inflammatory activation, CTEPH-ECs were incubated with the NF-κB inhibitor Bay 11-7085. The increase in pro-inflammatory cytokines was abolished when cells were incubated with the NF-κB inhibitor. To determine if NF-κB was indeed activated, we stained pulmonary endarterectomy (PEA) specimens from CTEPH patients and ECs isolated from PEA specimens for phospho-NF-κB-P65 and found that especially the vessels within the thrombus and CTEPH-ECs are positive for phospho-NF-κB-P65. In summary, we show that CTEPH-ECs have a pro-inflammatory status under basal conditions, and blocking NF-κB signaling reduces the production of inflammatory factors in CTEPH-ECs. Therefore, our results show that the increased basal pro-inflammatory status of CTEPH-ECs is, at least partially, regulated through activation of NF-κB signaling and potentially contributes to the pathophysiology and progression of CTEPH

    Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis

    Get PDF
    Members of the transforming growth factor β (TGF-β) family have been genetically linked to vascular formation during embryogenesis. However, contradictory studies about the role of TGF-β and other family members with reported vascular functions, such as bone morphogenetic protein (BMP) 9, in physiological and pathological angiogenesis make the need for mechanistic studies apparent. We demonstrate, by genetic and pharmacological means, that the TGF-β and BMP9 receptor activin receptor-like kinase (ALK) 1 represents a new therapeutic target for tumor angiogenesis. Diminution of ALK1 gene dosage or systemic treatment with the ALK1-Fc fusion protein RAP-041 retarded tumor growth and progression by inhibition of angiogenesis in a transgenic mouse model of multistep tumorigenesis. Furthermore, RAP-041 significantly impaired the in vitro and in vivo angiogenic response toward vascular endothelial growth factor A and basic fibroblast growth factor. In seeking the mechanism for the observed effects, we uncovered an unexpected signaling synergy between TGF-β and BMP9, through which the combined action of the two factors augmented the endothelial cell response to angiogenic stimuli. We delineate a decisive role for signaling by TGF-β family members in tumor angiogenesis and offer mechanistic insight for the forthcoming clinical development of drugs blocking ALK1 in oncology

    Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF-β signalling

    Get PDF
    Pulmonary arterial hypertension (PAH) is a devastating disease, characterized by obstructive pulmonary vascular remodelling ultimately leading to right ventricular (RV) failure and death. Disturbed transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling, endothelial cell dysfunction, increased proliferation of smooth muscle cells and fibroblasts, and inflammation contribute to this abnormal remodelling. Peptidyl-prolyl isomerase Pin1 has been identified as a critical driver of proliferation and inflammation in vascular cells, but its role in the disturbed TGF-β/BMP signalling, endothelial cell dysfunction, and vascular remodelling in PAH is unknown. Here, we report that Pin1 expression is increased in cultured pulmonary microvascular endothelial cells (MVECs) and lung tissue of PAH patients. Pin1 inhibitor, juglone significantly decreased TGF-β signalling, increased BMP signalling, normalized their hyper-proliferative, and inflammatory phenotype. Juglone treatment reversed vascular remodelling through reducing TGF-β signalling in monocrotaline + shunt-PAH rat model. Juglone treatment decreased Fulton index, but did not affect or harm cardiac function and remodelling in rats with RV pressure load induced by pulmonary artery banding. Our study demonstrates that inhibition of Pin1 reversed the PAH phenotype in PAH MVECs in vitro and in PAH rats in vivo, potentially through modulation of TGF-β/BMP signalling pathways. Selective inhibition of Pin1 could be a novel therapeutic option for the treatment of PAH. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10456-021-09812-7

    Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?

    Get PDF
    Patients with bicuspid aortic valve (BAV) and patients with Marfan syndrome (MFS) are more prone to develop aortic dilation and dissection compared to persons with a tricuspid aortic valve (TAV). To elucidate potential common and distinct pathways of clinical relevance, we compared the histopathological substrates of aortopathy. Ascending aortic wall biopsies were divided in five groups: BAV (n = 36) and TAV (n = 23) without and with dilation and non-dilated MFS (n = 8). General histologic features, apoptosis, the expr

    Exacerbated inflammatory signaling underlies aberrant response to BMP9 in pulmonary arterial hypertension lung endothelial cells

    Get PDF
    Imbalanced transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) signaling are postulated to favor a pathological pulmonary endothelial cell (EC) phenotype in pulmonary arterial hypertension (PAH). BMP9 is shown to reinstate BMP receptor type-II (BMPR2) levels and thereby mitigate hemodynamic and vascular abnormalities in several animal models of pulmonary hypertension (PH). Yet, responses of the pulmonary endothelium of PAH patients to BMP9 are unknown. Therefore, we treated primary PAH patient-derived and healthy pulmonary ECs with BMP9 and observed that stimulation induces transient transcriptional signaling associated with the process of endothelial-to-mesenchymal transition (EndMT). However, solely PAH pulmonary ECs showed signs of a mesenchymal trans-differentiation characterized by a loss of VE-cadherin, induction of transgelin (SM22α), and reorganization of the cytoskeleton. In the PAH cells, a prolonged EndMT signaling was found accompanied by sustained elevation of pro-inflammatory, pro-hypoxic, and pro-apoptotic signaling. Herein we identified interleukin-6 (IL6)-dependent signaling to be the central mediator required for the BMP9-induced phenotypic change in PAH pulmonary ECs. Furthermore, we were able to target the BMP9-induced EndMT process by an IL6 capturing antibody that normalized autocrine IL6 levels, prevented mesenchymal transformation, and maintained a functional EC phenotype in PAH pulmonary ECs. In conclusion, our results show that the BMP9-induced aberrant EndMT in PAH pulmonary ECs is dependent on exacerbated pro-inflammatory signaling mediated through IL6
    corecore