2,702 research outputs found

    Selective serotonin reuptake inhibitors in the treatment of generalized anxiety disorder

    Get PDF
    Selective serotonin reuptake inhibitors have proven efficacy in the treatment of panic disorder, obsessive–compulsive disorder, post-traumatic stress disorder and social anxiety disorder. Accumulating data shows that selective serotonin reuptake inhibitor treatment can also be efficacious in patients with generalized anxiety disorder. This review summarizes the findings of randomized controlled trials of selective serotonin reuptake inhibitor treatment for generalized anxiety disorder, examines the strengths and weaknesses of other therapeutic approaches and considers potential new treatments for patients with this chronic and disabling anxiety disorder

    Low specificity of determine HIV1/2 RDT using whole blood in south west Tanzania

    Get PDF
    Objective: To evaluate the diagnostic performance of two rapid detection tests (RDTs) for HIV 1/2 in plasma and in whole blood samples. Methods: More than 15,000 study subjects above the age of two years participated in two rounds of a cohort study to determine the prevalence of HIV. HIV testing was performed using the Determine HIV 1/2 test (Abbott) in the first (2006/2007) and the HIV 1/2 STAT-PAK Dipstick Assay (Chembio) in the second round (2007/2008) of the survey. Positive results were classified into faint and strong bands depending on the visual appearance of the test strip and confirmed by ELISA and Western blot. Results: The sensitivity and specificity of the Determine RDT were 100% (95% confidence interval = 86.8 to 100%) and 96.8% (95.9 to 97.6%) in whole blood and 100% (99.7 to 100%) and 97.9% (97.6 to 98.1%) in plasma respectively. Specificity was highly dependent on the tested sample type: when using whole blood, 67.1% of positive results were false positive, as opposed to 17.4% in plasma. Test strips with only faint positive bands were more often false positive than strips showing strong bands and were more common in whole blood than in plasma. Evaluation of the STAT-PAK RDT in plasma during the second year resulted in a sensitivity of 99.7% (99.1 to 99.9%) and a specificity of 99.3% (99.1 to 99.4%) with 6.9% of the positive results being false. Conclusions: Our study shows that the Determine HIV 1/2 strip test with its high sensitivity is an excellent tool to screen for HIV infection, but that – at least in our setting – it can not be recommended as a confirmatory test in VCT campaigns where whole blood is used

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo

    The plight of the sense-making ape

    Get PDF
    This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception

    Bats Use Magnetite to Detect the Earth's Magnetic Field

    Get PDF
    While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals

    Suicide ideation of individuals in online social networks

    Full text link
    Suicide explains the largest number of death tolls among Japanese adolescents in their twenties and thirties. Suicide is also a major cause of death for adolescents in many other countries. Although social isolation has been implicated to influence the tendency to suicidal behavior, the impact of social isolation on suicide in the context of explicit social networks of individuals is scarcely explored. To address this question, we examined a large data set obtained from a social networking service dominant in Japan. The social network is composed of a set of friendship ties between pairs of users created by mutual endorsement. We carried out the logistic regression to identify users' characteristics, both related and unrelated to social networks, which contribute to suicide ideation. We defined suicide ideation of a user as the membership to at least one active user-defined community related to suicide. We found that the number of communities to which a user belongs to, the intransitivity (i.e., paucity of triangles including the user), and the fraction of suicidal neighbors in the social network, contributed the most to suicide ideation in this order. Other characteristics including the age and gender contributed little to suicide ideation. We also found qualitatively the same results for depressive symptoms.Comment: 4 figures, 9 table

    The Distances of the Magellanic Clouds

    Get PDF
    The present status of our knowledge of the distances to the Magellanic Clouds is evaluated from a post-Hipparcos perspective. After a brief summary of the effects of structure, reddening, age and metallicity, the primary distance indicators for the Large Magellanic Cloud are reviewed: The SN 1987A ring, Cepheids, RR Lyraes, Mira variables, and Eclipsing Binaries. Distances derived via these methods are weighted and combined to produce final "best" estimates for the Magellanic Clouds distance moduli.Comment: Invited review article to appear in ``Post Hipparcos Cosmic Candles'', F. Caputo & A. Heck (Eds.), Kluwer Academic Publ., Dordrecht, in pres

    Population-Based Precision Cancer Screening: A Symposium on Evidence, Epidemiology, and Next Steps

    Get PDF
    Precision medicine, an emerging approach for disease treatment that takes into account individual variability in genes, environment, and lifestyle, is under consideration for preventive interventions, including cancer screening. On September 29, 2015, the National Cancer Institute sponsored a symposium entitled “Precision Cancer Screening in the General Population: Evidence, Epidemiology, and Next Steps”. The goal was two-fold: to share current information on the evidence, practices, and challenges surrounding precision screening for breast, cervical, colorectal, lung, and prostate cancers, and to allow for in-depth discussion among experts in relevant fields regarding how epidemiology and other population sciences can be used to generate evidence to inform precision screening strategies. Attendees concluded that the strength of evidence for efficacy and effectiveness of precision strategies varies by cancer site, that no one research strategy or methodology would be able or appropriate to address the many knowledge gaps in precision screening, and that issues surrounding implementation must be researched as well. Additional discussion needs to occur to identify the high priority research areas in precision cancer screening for pertinent organs and to gather the necessary evidence to determine whether further implementation of precision cancer screening strategies in the general population would be feasible and beneficial

    Predictability of evolutionary trajectories in fitness landscapes

    Get PDF
    Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.Comment: 14 pages, 7 figure

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore