66 research outputs found

    Gut immune dysfunction through impaired innate pattern recognition receptor expression and gut microbiota dysbiosis in chronic SIV infection.

    Get PDF
    HIV targets the gut mucosa early in infection, causing immune and epithelial barrier dysfunction and disease progression. However, gut mucosal sensing and innate immune signaling through mucosal pattern recognition receptors (PRRs) during HIV infection and disease progression are not well defined. Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model of AIDS, we found a robust increase in PRRs and inflammatory cytokine gene expression during the acute SIV infection in both peripheral blood and gut mucosa, coinciding with viral replication. PRR expression remained elevated in peripheral blood following the transition to chronic SIV infection. In contrast, massive dampening of PRR expression was detected in the gut mucosa, despite the presence of detectable viral loads. Exceptionally, expression of Toll-like receptor 4 (TLR4) and TLR8 was downmodulated and diverged from expression patterns for most other TLRs in the gut. Decreased mucosal PRR expression was associated with increased abundance of several pathogenic bacterial taxa, including Pasteurellaceae members, Aggregatibacter and Actinobacillus, and Mycoplasmataceae family. Early antiretroviral therapy led to viral suppression but only partial maintenance of gut PRRs and cytokine gene expression. In summary, SIV infection dampens mucosal innate immunity through PRR dysregulation and may promote immune activation, gut microbiota changes, and ineffective viral clearance

    Fatigue and Recovery Time Course After Female Soccer Matches: A Systematic Review And Meta-analysis.

    Full text link
    BACKGROUND: This study aimed to analyze the extent of fatigue responses after female soccer matches and the ensuing recovery time course of performance, physiological, and perceptual responses. METHODS: Three databases (PubMed, Web of Science, and SPORTDiscus) were searched in October 2020 and updated in November 2021. Studies were included when participants were female soccer players, regardless of their ability level. Further, the intervention was an official soccer match with performance, physiological, or perceptual parameters collected pre- and post-match (immediately, 12 h, 24 h, 48 h, or 72 h-post). RESULTS: A total of 26 studies (n = 465 players) were included for meta-analysis. Most performance parameters showed some immediate post-match reduction (effect size [ES] = - 0.72 to - 1.80), apart from countermovement jump (CMJ; ES = - 0.04). Reduced CMJ performance occurred at 12 h (ES = - 0.38) and 24 h (ES = - 0.42) and sprint at 48 h post-match (ES = - 0.75). Inflammatory and immunological parameters responded acutely with moderate-to-large increases (ES = 0.58-2.75) immediately post-match. Creatine kinase and lactate dehydrogenase alterations persisted at 72 h post-match (ES = 3.79 and 7.46, respectively). Small-to-moderate effects were observed for increased cortisol (ES = 0.75) and reduced testosterone/cortisol ratio (ES = -0.47) immediately post-match, while negligible to small effects existed for testosterone (ES = 0.14) and estradiol (ES = 0.34). Large effects were observed for perceptual variables, with increased fatigue (ES = 1.79) and reduced vigor (ES = - 0.97) at 12 h post-match, while muscle soreness was increased immediately post (ES = 1.63) and at 24 h post-match (ES = 1.00). CONCLUSIONS: Acute fatigue exists following female soccer matches, and the performance, physiological, and perceptual parameters showed distinctive recovery timelines. Importantly, physical performance was recovered at 72 h post-match, whereas muscle damage markers were still increased at this time point. These timelines should be considered when planning training and match schedules. However, some caution should be advised given the small number of studies available on this population. REGISTRATION: The protocol for this systematic review was pre-registered on the International Prospective Register of Systematic Reviews (PROSPERO, Registration Number: CRD42021237857)

    Population analysis of vitamin D receptor polymorphisms and the role of genetic ancestry in an admixed population

    Get PDF
    The vitamin D receptor (VDR) is an essential protein related to bone metabolism. Some VDR alleles are differentially distributed among ethnic populations and display variable patterns of linkage disequilibrium (LD). In this study, 200 unrelated Brazilians were genotyped using 21 VDR single nucleotide polymorphisms (SNPs) and 28 ancestry informative markers. The patterns of LD and haplotype distribution were compared among Brazilian and the HapMap populations of African (YRI), European (CEU) and Asian (JPT+CHB) origins. Conditional regression and haplotype-specific analysis were performed using estimates of individual genetic ancestry in Brazilians as a quantitative trait. Similar patterns of LD were observed in the 5′ and 3′ gene regions. However, the frequency distribution of haplotype blocks varied among populations. Conditional regression analysis identified haplotypes associated with European and Amerindian ancestry, but not with the proportion of African ancestry. Individual ancestry estimates were associated with VDR haplotypes. These findings reinforce the need to correct for population stratification when performing genetic association studies in admixed populations

    Identification of Peptide Mimotopes of Trypanosoma brucei gambiense Variant Surface Glycoproteins

    Get PDF
    The control of human African trypanosomiasis or sleeping sickness, a deadly disease in sub-Saharan Africa, mainly depends on a correct diagnosis and treatment. The aim of our study was to identify mimotopic peptides (mimotopes) that may replace the native proteins in antibody detection tests for sleeping sickness and hereby improve the diagnostic sensitivity and specificity. We selected peptide expressing phages from the PhD.-12 and PhD.-C7C phage display libraries with mouse monoclonal antibodies specific to variant surface glycoprotein (VSG) LiTat 1.3 or LiTat 1.5 of Trypanosoma brucei gambiense. The peptide coding genes of the selected phages were sequenced and the corresponding peptides were synthesised. Several of the synthetic peptides were confirmed as mimotopes for VSG LiTat 1.3 or LiTat 1.5 since they were able to inhibit the binding of their homologous monoclonal to the corresponding VSG. These peptides were biotinylated and their diagnostic potential was assessed with human sera. We successfully demonstrated that human sleeping sickness sera recognise some of the mimotopes of VSG LiTat 1.3 and LiTat 1.5, indicating the diagnostic potential of such peptides

    Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis

    Full text link
    All rights reserved. Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control, for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses, however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniquesThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Rede Nanobiotec/Brasil-Universidade Federal de Uberlândia/CAPES, PRONEX-FAPEMIG (APQ-01019-09), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC and LRG are recipients of the grant from CNPq. MACF is the recipient of grants from FAPEMIG/CAPE

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)-giving infants only breast-milk for the first 6 months of life-is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization's Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030.This work was primarily supported by grant no. OPP1132415 from the Bill & Melinda Gates Foundation. Co-authors used by the Bill & Melinda Gates Foundation (E.G.P. and R.R.3) provided feedback on initial maps and drafts of this manuscript. L.G.A. has received support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Código de Financiamento 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant nos. 404710/2018-2 and 310797/2019-5). O.O.Adetokunboh acknowledges the National Research Foundation, Department of Science and Innovation and South African Centre for Epidemiological Modelling and Analysis. M.Ausloos, A.Pana and C.H. are partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P4-ID-PCCF-2016-0084. P.C.B. would like to acknowledge the support of F. Alam and A. Hussain. T.W.B. was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. K.Deribe is supported by the Wellcome Trust (grant no. 201900/Z/16/Z) as part of his international intermediate fellowship. C.H. and A.Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P2-2.1-SOL-2020-2-0351. B.Hwang is partially supported by China Medical University (CMU109-MF-63), Taichung, Taiwan. M.Khan acknowledges Jatiya Kabi Kazi Nazrul Islam University for their support. A.M.K. acknowledges the other collaborators and the corresponding author. Y.K. was supported by the Research Management Centre, Xiamen University Malaysia (grant no. XMUMRF/2020-C6/ITM/0004). K.Krishan is supported by a DST PURSE grant and UGC Centre of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M.Kumar would like to acknowledge FIC/NIH K43 TW010716-03. I.L. is a member of the Sistema Nacional de Investigación (SNI), which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá. M.L. was supported by China Medical University, Taiwan (CMU109-N-22 and CMU109-MF-118). W.M. is currently a programme analyst in Population and Development at the United Nations Population Fund (UNFPA) Country Office in Peru, which does not necessarily endorses this study. D.E.N. acknowledges Cochrane South Africa, South African Medical Research Council. G.C.P. is supported by an NHMRC research fellowship. P.Rathi acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India. Ramu Rawat acknowledges the support of the GBD Secretariat for supporting the reviewing and collaboration of this paper. B.R. acknowledges support from Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal. A.Ribeiro was supported by National Funds through FCT, under the programme of ‘Stimulus of Scientific Employment—Individual Support’ within the contract no. info:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND/02386/2018/CP1538/CT0001/PT. S.Sajadi acknowledges colleagues at Global Burden of Diseases and Local Burden of Disease. A.M.S. acknowledges the support from the Egyptian Fulbright Mission Program. F.S. was supported by the Shenzhen Science and Technology Program (grant no. KQTD20190929172835662). A.Sheikh is supported by Health Data Research UK. B.K.S. acknowledges Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal for all the academic support. B.U. acknowledges support from Manipal Academy of Higher Education, Manipal. C.S.W. is supported by the South African Medical Research Council. Y.Z. was supported by Science and Technology Research Project of Hubei Provincial Department of Education (grant no. Q20201104) and Outstanding Young and Middle-aged Technology Innovation Team Project of Hubei Provincial Department of Education (grant no. T2020003). The funders of the study had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. All maps presented in this study are generated by the authors and no permissions are required to publish them
    • …
    corecore