3 research outputs found

    CAD/CAM Glass Ceramics for Single-Tooth Implant Crowns

    No full text
    Purpose:To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area.Materials and Methods:A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a O 1.5 x 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials.Results:The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively.Conclusion:Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments

    Fatigue Resistance of 2 Different CAD/CAM Glass-Ceramic Materials Used for Single-Tooth Implant Crowns

    No full text
    Purpose: To evaluate the fatigue resistance of 2 different CAD/CAM in-office monoceramic materials with single-tooth implant-supported crowns in functional area

    In vitro

    Get PDF
    PURPOSE: The purpose of this report was to evaluate the effect of the fabrication method and material type on the fracture strength of provisional crowns. MATERIALS AND METHODS: A master model with one crown (maxillary left second premolar) was manufactured from Cr-Co alloy. The master model was scanned, and the data set was transferred to a CAD/CAM unit (Yenamak D50, Yenadent Ltd, Istanbul, Turkey) for the Cercon Base group. For the other groups, temporary crowns were produced by direct fabrication methods (Imident, Temdent, Structur Premium, Takilon, Systemp c&b II, and Acrytemp). The specimens were subjected to water storage at 37℃ for 24 hours, and then they were thermocycled (TC, 5000×, 5-55℃) (n=10). The maximum force at fracture (Fmax) was measured in a universal test machine at 1 mm/min. Data was analyzed by non-parametric statistics (α=.05). RESULTS: Fmax values varied between 711.09-1392.1 N. In the PMMA groups, Takilon showed the lowest values (711.09 N), and Cercon Base showed the highest values (959.59 N). In the composite groups, Structur Premium showed the highest values (1392.1 N), and Acrytemp showed the lowest values (910.05 N). The composite groups showed significantly higher values than the PMMA groups (P=.01). CONCLUSION: Composite-based materials showed significantly higher fracture strengths than PMMA-based materials. The CAD-CAM technique offers more advantages than the direct technique
    corecore