4 research outputs found

    Association between Nutritional Status and Treatment Response and Survival in Patients Treated with Immunotherapy for Lung Cancer: A Retrospective French Study

    No full text
    Malnutrition is associated with a greater risk of morbidity and mortality and lower tolerance to chemotherapy. Our purpose was to study the association between nutritional status and the efficiency and tolerance of immunotherapy in non-small cell lung cancer (NSCLC). Nutritional and oncological data were reported at 2 months (M2) and 4 months (M4) after the initiation of immunotherapy (M0). The influence of nutritional status at M0 was estimated with the efficacy and toxicity of immunotherapy at M2 to M4. In total, 127 patients were included in the study, and nutritional status was estimated at M0 for 120 patients: 67% were not malnourished, 20% presented with moderate malnutrition, and 13% presented with severe malnutrition. There was no significant link between the nutritional status at M0 and the toxicity of immunotherapy at M2 and M4. However, severe malnutrition was significantly associated with treatment efficacy at M2 (p = 0.04) and with a lower survival rate with an HR (Hazard Ratio) = 2.32–95% C.I: 1.13–4.75 (p = 0.02). Furthermore, a monthly decrease of 1% of the weight had an HR = 1.17–95% C.I: 1.13–1.21 (p = 0.0001). Severe malnutrition and weight loss are independent factors associated with lower survival. Studies integrating the systemic detection of sarcopenia with a closer nutritional follow-up could highlight an improvement in survival

    Effect of acute aerobic exercise before immunotherapy and chemotherapy infusion in patients with metastatic non-small-cell lung cancer: protocol for the ERICA feasibility trial

    No full text
    International audienceIntroduction Patients with metastatic non-small cell lung cancer (mNSCLC) suffer from numerous symptoms linked to disease and treatment which may further impair the patient’s overall condition. In addition to its benefits on quality of life and fatigue, physical exercise may improve treatment response, notably due to its known effects on the immune system. The ERICA study is designed to assess the feasibility of a supervised acute physical exercise therapy realised immediately prior immune-chemotherapy infusion in patients with mNSCLC. Secondary objectives will examine the effects of acute exercise combined with an unsupervised home-walking programme on clinical, physical, psychosocial and biological parameters. Methods and analysis ERICA is a prospective, monocentric, randomised controlled, open-label feasibility study conducted at the Centre LĂ©on BĂ©rard Comprehensive Cancer Center (France). Thirty patients newly diagnosed with mNSCLC will be randomised (2:1 ratio) to the ‘exercise’ or the ‘control’ group. At baseline and during the last treatment cycle, participants in both groups will receive Physical Activity recommendations, and two nutritional assessments. In the exercise group, participants will receive a 3-month programme consisting of a supervised acute physical exercise session prior to immune-chemotherapy infusion, and an unsupervised home-based walking programme with an activity tracker. The acute exercise consists of 35 min interval training at submaximal intensity scheduled to terminate 15 min prior to infusion. Clinical, physical, biological and psychosocial parameters will be assessed at baseline, 3 and 6 months after inclusion. Biological measures will include immune, inflammatory, metabolic, oxidative stress biomarkers and molecular profiling. Ethics and dissemination The study protocol was approved by the French ethics committee (ComitĂ© de protection des personnes Ile de France II, N°ID-RCB 20.09.04.65226, 8 December 2020). The study is registered on ClinicalTrials.gov (NCT number: NCT04676009 ) and is at the pre-results stage. All participants will sign an informed consent form. The findings will be disseminated in peer-reviewed journals and academic conferences

    Combined effects of exercise and immuno-chemotherapy treatments on tumor growth in MC38 colorectal cancer-bearing mice

    No full text
    International audienceAcute exercise induces transient modifications in the tumor microenvironment and has been linked to reduced tumor growth along with increased infiltration of immune cells within the tumor in mouse models. In this study, we aimed to evaluate the impact of acute exercise before treatment administration on tumor growth in a mice model of MC38 colorectal cancer receiving an immune checkpoint inhibitor (ICI) and chemotherapy. Six-week-old mice injected with colorectal cancer cells (MC38) were randomized in 4 groups: control (CTRL), immuno-chemotherapy (TRT), exercise (EXE) and combined intervention (TRT/EXE). Both TRT and TRT-EXE received ICI: anti-PD1-1 (1 injection/week) and capecitabine + oxaliplatin (5 times a week) for 1 week (experimentation 1), 3 weeks (experimentation 2). TRT-EXE and EXE groups were submitted to 50 minutes of treadmill exercise before each treatment administration. Over the protocol duration, tumor size has been monitored daily. Tumor growth and microenvironment parameters were measured after the intervention on Day 7 (D7) and Day 16 (D16). From day 4 to day 7, tumor volumes decreased in the EXE/TRT group while remaining stable in the TRT group (p=0.0213). From day 7 until day 16 tumor volume decreased with no significant difference between TRT and TRT/EXE. At D7 the TRT/EXE group exhibited a higher total infiltrate T cell (p=0.0118) and CD8+ cytotoxic T cell (p=0.0031). At D16, tumor marker of apoptosis, vascular integrity and inflammation were not significantly different between TRT and TRT/EXE. Our main result was that acute exercise before immuno-chemotherapy administration significantly decreased early-phase tumor growth (D0 to D4). Additionally, exercise led to immune cell infiltration changes during the first week after exercise, while no significant molecular alterations in the tumor were observed 3 weeks after exercise

    DataSheet_1_Combined effects of exercise and immuno-chemotherapy treatments on tumor growth in MC38 colorectal cancer-bearing mice.docx

    No full text
    Acute exercise induces transient modifications in the tumor microenvironment and has been linked to reduced tumor growth along with increased infiltration of immune cells within the tumor in mouse models. In this study, we aimed to evaluate the impact of acute exercise before treatment administration on tumor growth in a mice model of MC38 colorectal cancer receiving an immune checkpoint inhibitor (ICI) and chemotherapy. Six-week-old mice injected with colorectal cancer cells (MC38) were randomized in 4 groups: control (CTRL), immuno-chemotherapy (TRT), exercise (EXE) and combined intervention (TRT/EXE). Both TRT and TRT-EXE received ICI: anti-PD1-1 (1 injection/week) and capecitabine + oxaliplatin (5 times a week) for 1 week (experimentation 1), 3 weeks (experimentation 2). TRT-EXE and EXE groups were submitted to 50 minutes of treadmill exercise before each treatment administration. Over the protocol duration, tumor size has been monitored daily. Tumor growth and microenvironment parameters were measured after the intervention on Day 7 (D7) and Day 16 (D16). From day 4 to day 7, tumor volumes decreased in the EXE/TRT group while remaining stable in the TRT group (p=0.0213). From day 7 until day 16 tumor volume decreased with no significant difference between TRT and TRT/EXE. At D7 the TRT/EXE group exhibited a higher total infiltrate T cell (p=0.0118) and CD8+ cytotoxic T cell (p=0.0031). At D16, tumor marker of apoptosis, vascular integrity and inflammation were not significantly different between TRT and TRT/EXE. Our main result was that acute exercise before immuno-chemotherapy administration significantly decreased early-phase tumor growth (D0 to D4). Additionally, exercise led to immune cell infiltration changes during the first week after exercise, while no significant molecular alterations in the tumor were observed 3 weeks after exercise.</p
    corecore